Hyperbola (S.N.Dey) | Part-6 | Ex-6

In the previous article , we have solved few Short Answer Type questions of Hyperbola chapter of S.N.Dey mathematics, Class 11. In this article , we will solve Complete Long Answer Type questions of Hyperbola related problems of S N Dey mathematics class 11.
Hyperbola-Long Answer Type Questions
Long Answer Type Questions’ Solutions(Hyperbola)-S N Dey

1. Find the centre, the length of latus rectum, the eccentricity, the co-ordinates of foci and the equations of the directrices of the hyperbola ~\frac{(x+2)^2}{9}-\frac{(y-1)^2}{16}=1.

Solution.

Comparing the given equation of hyperbola with the general form of hyperbola ~\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1~ we get,

~a^2=9 \Rightarrow a=3, ~b^2=16 \Rightarrow b=4,~~\alpha=-2,~~\beta=1.

(i) The co-ordinates of centre of hyperbola : ~(\alpha,\beta)=(-2,1).

(ii) The eccentricity ~e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{16}{9}}=\sqrt{\frac{25}{9}}=\frac 53.

(iii) The co-ordinates of foci : 

(\alpha \pm ae,\beta)=\left(-2 \pm 3 \times \frac 53,1\right)=(-2 \pm 5,1)~ i.e., ~(3,1)~ and ~(-7,1).

(iv) The equations of directrices are :

~x= \alpha \pm \frac ae=-2 \pm \frac{3}{\frac 53}=-2 \pm \frac 95 \\ \therefore~~ 5(x+2)=\pm 9.

2. Show that the equation ~9x^2-16y^2-18x-64y-199=0~ represents the equation of a hyperbola ; find the co-ordinates of its centre and foci and also the equation of its directrices.

Solution.

The equation of the hyperbola can be written as 

~9(x^2-2x+1)-16(y^2+4y+4)=9-64+199 \\ \text{or,}~~9(x-1)^2-16(y+2)^2=144 \\ \text{or,}~~ \frac{(x-1)^2}{16}-\frac{(y+2)^2}{9}=1 \rightarrow(1)

Comparing the given equation of hyperbola with the general form of hyperbola ~\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1~ we get,

~ a^2=16 \Rightarrow a=4,~~b^2=9 \Rightarrow b=3,~~\alpha=1,~~\beta=-2.

(i) Centre : ~(\alpha,\beta)=(1,-2)

(ii) Foci : ~(\alpha \pm ae,\beta)=\left(1 \pm 4 \times \frac 54,-2\right)=(1 \pm 5,-2)~~ i.e., ~(6,-2)~ and (-4,-2).

The eccentricity ~e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{9}{16}}=\sqrt{\frac{25}{16}}=\frac 54. 

(iii) The equations of directrices are given by 

~x=\alpha \pm \frac ae=1 \pm \frac{4}{5/4}=1 \pm \frac{16}{5} \\ \text{or,}~~ 5x=5 \pm 16 \\ \therefore~~ 5x=21,~~5x=-11\Rightarrow 5x+11=0. 

3. Find (i) the centre (ii) the vertice (iii) the equations of the axes (iv) the lengths of axes (v) the eccentricities (vi) the lengths of latera recta (vii) the co-ordinates of foci (viii) the equations of the directrices of the following two hyperbolas :

(a)~9x^2-16y^2-90x+64y+17=0,~(b)~3x^2-3y^2-18x+12y+2=0.

Solution.

9x^2-16y^2-90x+64y+17=0 \\ \text{or,}~~ 9(x^2-10x+25)-16(y^2-4y+4)=225-64-17 \\ \text{or,}~~ 9(x-5)^2-16(y-2)^2=144 \\ \text{or,}~~ \frac{(x-5)^2}{16}-\frac{(y-2)^2}{9}=1 \rightarrow(1)

Comparing (1) with ~\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1~ we get,

a^2=16 \Rightarrow a=4,~~b^2=9 \Rightarrow b=3, \alpha=5,~~\beta=2.

(i) Centre of the hyperbola (1) is (\alpha,\beta)=(5,2)

(ii) Co-ordinates of vertices : (\alpha \pm a,\beta)=(5 \pm 4,2)=(9,2),~(1,2)

(iii) The equation of transverse axis : y-2=0~ and conjugate axis : ~x-5=0.

(iv)The length of transverse axis : 2a=2 \times 4=8~\text{unit} and the length of conjugate axis : 2b=2\times 3=6~~\text{unit}.

(v) The eccentricity (e) is given by 

~e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{9}{16}}=\sqrt{\frac{25}{16}}=\frac 54.

(vi) The length of latera recta : ~\frac{2b^2}{a}=2 \times\frac{9}{4}=\frac 92~~\text{unit}.

(vii) The co-ordinates of foci :

(\alpha \pm ae,\beta)=\left(5 \pm 4 \times \frac 54,2\right)=(5 \pm 5,2).

(viii) The equations of directrices are given by 

~x=\alpha \pm \frac ae=5 \pm \frac{4}{5/4}=5 \pm \frac{16}{5} \\ \text{or,}~~ 5x=25 \pm 16 \Rightarrow 5(x-5)=\pm 16. 

Solution (b)

3x^2-3y^2-18x+12y+2=0 \\ \text{or,}~~3(x^2-6x+9)-3(y^2-4y+4)=-2+27-12 \\ \text{or,}~~3(x-3)^2-3(y-2)^2=13 \\ \text{or,}~~ \frac{(x-3)^2}{\frac{13}{3}}-\frac{(y-2)^2}{\frac{13}{3}}=1 \rightarrow(1)

Comparing (1) with ~\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1~ we get,

a^2=b^2=\frac{13}{3} \Rightarrow a=b=\sqrt{\frac{13}{3}},~\alpha=3,~~\beta=2.

(i) Centre of the hyperbola (1) is (\alpha,\beta)=(3,2)

(ii) Co-ordinates of vertices : (\alpha \pm a,\beta)=(3 \pm \sqrt{\frac{13}{3}},2)

(iii) The equation of transverse axis : y-2=0~ and conjugate axis : ~x-3=0.

(iv)The length of transverse axis : 2a=2 \times \sqrt{\frac{13}{3}}~\text{unit}= the length of conjugate axis : 2b=2\times \sqrt{\frac{13}{3}}~~\text{unit}.

(v) The eccentricity (e) is given by 

e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{a^2}{a^2}}=\sqrt{2}.

(vi) The length of latera recta : ~\frac{2b^2}{a}=2 \times\frac{\frac{13}{3}}{\sqrt{\frac{13}{3}}}=2 \cdot \sqrt{\frac{13}{3}}~~\text{unit}.

(vii) The co-ordinates of foci :

(\alpha \pm ae,\beta)=\left(3 \pm \sqrt{\frac{13}{3}} \times\sqrt{2},2\right)=\left(3 \pm \sqrt{\frac{26}{3}},2\right).

(viii) The equations of directrices are given by 

~x=\alpha \pm \frac ae=3 \pm \frac{\sqrt{\frac{13}{3}}}{\sqrt{2}}=3 \pm \sqrt{\frac{13}{6}} \\ \text{or,}~~ x-3=\pm \sqrt{\frac{13}{6}} 

4. A point moves on a plane in such a manner that the difference of its distances from the points  ~(4,0)~ and ~(-4, 0)~ is always constant and equal to ~4\sqrt{2}. Show that the locus of the moving point is a rectangular hyperbola whose equation you are to determine.

Solution.

Let the co-ordinates of moving point be ~(h,k).

So, by question,

|\sqrt{(h-4)^2+k^2}-\sqrt{(h+4)^2+k^2}|=4\sqrt{2} \\ \text{or,}~~\sqrt{(h-4)^2+k^2}=\sqrt{(h+4)^2+k^2} \pm 4\sqrt{2} \\ \text{or,}~~(h-4)^2+k^2=(h+4)^2+k^2 +(4\sqrt{2})^2 \pm 8\sqrt{2} \sqrt{(h+4)^2+k^2} \\ \text{or,}~~ -[(h+4)^2-(h-4)^2]=32 \pm 8\sqrt{2}p~~(*) \\ \text{or,}~~ -4 \cdot h \cdot 4=32 \pm 8\sqrt{2}p \\ \text{or,}~~ -16h=32 \pm 8\sqrt{2}p \\ \text{or,}~~ -2h= 4 \pm \sqrt{2}p \\ \text{or,}~~ -(2h+4)=\pm \sqrt{2}p \\ \text{or,}~~ (2h+4)^2=2p^2 \\ \text{or,}~~ 4h^2+2 \cdot 2h \cdot 4+4^2=2(h+4)^2+2k^2 \\ \text{or,}~~ 2h^2+8h+8=(h+4)^2+k^2 \\ \text{or,}~~ 2h^2+8h+8=h^2+8h+16+k^2 \\ \therefore~h^2-k^2=8 \rightarrow(1)

Hence, by (1) we can say that the locus of moving point is ~x^2-y^2=8~ which is a rectangular hyperbola.

Note [*] : p=\sqrt{(h+4)^2+k^2}

5. A point moves on a plane so that its distance from the line ~3x-4=0.~ Show that the locus of the moving point is a hyperbola and  the equation of its locus is ~5x^2-4y^2=20.

Solution.

Let the co-ordinates of the moving point be ~P(h,k).

So, by question,

\sqrt{(h-3)^2+(k-0)^2}=\frac 32 \cdot \left|\frac{3h-4}{\sqrt{3^2+0^2}}\right| \\ \text{or,}~~ \sqrt{(h-3)^2+k^2}=\frac 32 \cdot \frac{|3h-4|}{3} \\ \text{or,}~~ (h-3)^2+k^2=\frac 94 \cdot \frac{(3h-4)^2}{9} \\ \text{or,}~~ 4(h^2-6h+9)+4k^2=9h^2-24h+16 \\ \text{or,}~~ 36-16=(9h^2-4h^2)-4k^2 \\ \text{or,}~~ 5h^2-4k^2=20 \rightarrow(1)

Hence, by (1),~ we can say that the locus of the moving point represents a hyperbola and is given by ~5x^2-4y^2=20.

6. The hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ passes through the point of intersection of the lines ~x-3\sqrt{5}y=0~ and ~\sqrt{5}x-2y=13~ and the length of its latus rectum is ~\frac 43. Find the co-ordinates of its foci.

Solution.

The  given equations of straight lines are ~x-3\sqrt{5}y=0 \Rightarrow x=3\sqrt{5}y\rightarrow(1)~ and ~\sqrt{5}x-2y=13 \rightarrow(2)

From (1) and (2) we get,

\sqrt{5}(3\sqrt{5}y)-2y=13 \\ \text{or,}~~ 15y-2y=13 \\ \text{or,}~~ 13y=13 \\ \text{or,}~~ y=\frac{13}{13}=1. 

\therefore~ x=3\sqrt{5} \times 1=3\sqrt{5}.

So, the point of intersection of the straight lines (1) and (2) is given by ~(3\sqrt{5},1).

Since the given hyperbola passes through the point ~(3\sqrt{5},1),

\frac{(3\sqrt{5})^2}{a^2}-\frac{1^2}{b^2}=1 \\ \text{or,}~~ \frac{45}{a^2}-\frac{1}{b^2}=1 \rightarrow(3)

Again, the length of the latus rectum of the hyperbola is

\frac{2b^2}{a}=\frac 43 \Rightarrow b^2=\frac 23 a \rightarrow(4)

From (3) and (4) we get,

~\frac{45}{a^2}-\frac{3}{2a}=1 \\ \text{or,}~~ \frac{90-3a}{2a^2}=1 \\ \text{or,}~~ 90-3a=2a^2 \\ \text{or,}~~ 2a^2+3a-90=0 \\ \text{or,}~~ a=\frac{-3 \pm \sqrt{3^2-4 \times 2 \times (-90)}}{2 \times 2}=\frac{-3 \pm \sqrt{729}}{4} \\ \therefore~ a= \frac{-3+27}{4}=6~~(\because~ a>0)

\therefore~ b^2= \frac 23 \times 6=4 \Rightarrow b=2~(\because~ b>0).

\therefore~ e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{4}{36}}=\sqrt{1+\frac 19} \\ \text{or,}~~ e=\frac{\sqrt{10}}{3}

Hence, the co-ordinates of the foci are

(\pm ae,0)=\left( \pm 6 \times \frac{\sqrt{10}}{3},0\right)=(\pm 2\sqrt{10},0).

7. The numerical value of the product of the perpendicular distances of a moving point from the lines ~4x-3y+11=0~ and ~4x+3y+5=0~ is ~\frac{144}{25}. ~ Find the equation to the locus of the moving point.

Solution.

Comparing the given ellipse with the general equation of the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get, ~a^2=25 \Rightarrow a=\sqrt{25}=5,~~b^2=9 \Rightarrow b=\sqrt{9}=3.

The eccentricity (e) of the given ellipse is 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{25-9}{25}}=\sqrt{\frac{16}{25}}=\frac 45.

The co-ordinates of foci of the ellipse are (\pm ae,0)=\left(\pm 5 \cdot \frac 45,0 \right)=(\pm 4,0).

Let the co-ordinates of the moving point be ~(h,k).

So, by question

\frac{|4h-3k+11|}{\sqrt{4^2+(-3)^2}} \times \frac{|4h+3k+5|}{\sqrt{4^2+3^2}}=\frac{144}{25} \\ \text{or,}~~ \frac 15 \times \frac 15 \times |(4h-3k+11)(4h+3k+5)|=\frac{144}{25} \\ \text{or,}~~ |(4h+3k)(4h-3k)+5(4h-3k)+11(4h+3k)+55|=144 \\ \text{or,}~~ |16h^2-9k^2+20h-15k+44h+33k+55|=144 \\ \text{or,}~~ |16(h^2+4k+4)-9(k^2-2k+1)|=144 \\ \text{or,}~~|16(h+2)^2-9(k-1)^2|=144

Hence, the locus of the moving point is given by ~16(x+2)^2-9(y-1)^2=144~ or, ~9(y-1)^2-16(x+2)^2=144.

8. An ellipse E has the equation ~\frac{x^2}{36}+\frac{y^2}{32}=1~ and ~C~ and ~S~ are its centre and focus in the usual notation. A hyperbola ~H~ has a vertex at C, has the point S as its focus nearer to C and has its latus rectum of equal length to that of E. Show that H has the eccentricity ~\frac 53~ and find its equation.

Solution.

The given ellipse ~E: \frac{x^2}{36}+\frac{y^2}{32}=1\rightarrow(1)

The eccentricity (e) of (1) is

e=\sqrt{1-\frac{32}{36}}=\sqrt{\frac{4}{36}}=\sqrt{\frac 19}=\frac 13,\\~C\equiv(0,0),~~S \equiv (2,0).

The transverse axis of H is along ~x- axis and the conjugate axis of H is along ~y-axis. Let the eccentricity of H be ~e_1,~ the length of the transverse axis be ~2a_1~ and the length of the conjugate axis be ~2b_1.

\therefore~ Focus of H is ~(\alpha+a_1e_1,0)~ and the vertex  ~(\alpha+a_1,0)~  and so clearly, the ordinates of centre of H is (\beta)=0.

By question, ~\alpha+a_1=0 \Rightarrow \alpha=-a_1~ and 

~\alpha+a_1e_1=2 \Rightarrow -a_1+a_1e_1=2 \Rightarrow a_1(e_1-1)=2 \rightarrow(1)

Again, the length of latus rectum of H is = the length of latus rectum of E.

\therefore~\frac{2b_1^2}{a_1}=\frac{2b^2}{a}=2 \times \frac{32}{6} \\ \text{or,}~~ \frac{b_1^2}{a_1}=\frac{32}{6}=\frac{16}{3}

For the hyperbola, the eccentricity (e_1) is 

e_1=1+\frac{b_1^2}{a_1^2} \Rightarrow e_1^2-1=\frac{b_1^2}{a_1^2} \Rightarrow \frac{b_1^2}{a_1}=a_1(e_1^2-1)=\frac{16}{3} \\ \therefore~ a_1(e_1-1) \times (e_1+1)=\frac{16}{3} \\ \text{or,}~~ 2(e_1+1)=\frac{16}{3}~~[\text{By (1)}] \\ \text{or,}~~ e_1+1=\frac 83 \Rightarrow e_1=\frac 83-1=\frac 53.

 ~a_1(e_1-1)=2 \Rightarrow a_1\left(\frac 53-1\right)=2 \Rightarrow a_1 \times \frac 23=2 \\ \therefore~ a_1=3.

\frac{b_1^2}{a_1}=\frac{16}{3} \Rightarrow \frac{b_1^2}{3}=\frac{16}{3} \\ \therefore~ b_1^2=16 \Rightarrow b_1=\sqrt{16}=4.

\therefore~~\alpha=-a_1=-3,~~\beta=0.

hence, the equation of required hyperbola is 

~\frac{(x-\alpha)^2}{a_1^2}-\frac{(y-\beta)^2}{b_1^2}=1 \\ \text{or,}~~ \frac{(x-(-3))^2}{9}-\frac{(y-0)^2}{16}=1 \\ \therefore~ \frac{(x+3)^2}{9}-\frac{y^2}{16}=1.

9. The foci of the ellipse ~\frac{x^2}{25}+\frac{y^2}{9}=1~ coincide with the hyperbola. If ~e=2~ for hyperbola, find the equation of the hyperbola.

Solution.

The given equation of ellipse is ~\frac{x^2}{25}+\frac{y^2}{16}=1 \rightarrow(1)

Comparing (1) with ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get,

a^2=25 \Rightarrow a=5,~~b^2=16 \Rightarrow b=4.

The eccentricity of (1) is given by 

e'=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac 45.

The co-ordinates of foci of the ellipse 

( \pm ae',0)=\left(\pm 5 \times \frac 45,0\right)=(\pm 4,0).

Let the equation of the hyperbola be ~\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1\rightarrow(2)

The eccentricity of the hyperbola ~e=2~~ . Since the  foci of the ellipse ~\frac{x^2}{25}+\frac{y^2}{9}=1~ coincide with the hyperbola ~(2), so

~a_1e=2 \Rightarrow a_1 \times 2=4 \Rightarrow a_1=\frac 42=2.

For the hyperbola (2) we get,

~e^2=1+\frac{b_1^2}{a_1^2} \\ \text{or,}~~ 2^2=1+\frac{b_1^2}{2^2} \\ \text{or,}~~ 4-1=\frac{b_1^2}{4} \\ \text{or,}~~ b_1^2=3 \times 4=12. 

Hence, by (2) ,  the equation of required hyperbola  is 

~\frac{x^2}{4}-\frac{y^2}{12}=1 \Rightarrow 3x^2-y^2=12.

Solution.

~x=a \cdot \frac{1+t^2}{1-t^2},~~y=\frac{2at}{1-t^2} \\ \Rightarrow \frac xa=\frac{1+t^2}{1-t^2},~~\frac ya=\frac{2t}{1-t^2}.

\therefore~ \frac{x^2}{a^2}-\frac{y^2}{a^2}=\left(\frac{1+t^2}{1-t^2}\right)^2-\left(\frac{2at}{1-t^2}\right)^2 \\ \text{or,}~~  \frac{x^2}{a^2}-\frac{y^2}{a^2}=\frac{(1+t^2)^2-4t^2}{(1-t^2)^2} \\ \text{or,}~~  \frac{x^2}{a^2}-\frac{y^2}{a^2}=\frac{(1-t^2)^2}{(1-t^2)^2} \\ \text{or,}~~  \frac{x^2}{a^2}-\frac{y^2}{a^2}=1\rightarrow(1)

Clearly, the equation (1) represents a hyperbola whose eccentricity is given by  ~e=\sqrt{1+\frac{a^2}{a^2}}=\sqrt{1+1}=\sqrt{2}.

  

Leave a Comment