Ellipse (S.N.Dey)|Part-1|Ex-5

In this article, we will do complete solutions of Very Short Answer Type Questions of Ellipse Chapter of  S.N.Dey mathematics, Class 11.
Ellipse VSA (S N Dey) Complete Solutions
Ellipse-VSA type Questions’ Complete Solution

1.~ Find the length of the latus rectum and the co-ordinate of the foci of the ellipse ~25x^2+4y^2=100.

Solution.

The given equation of ellipse can be written as

\frac{x^2}{4}+\frac{y^2}{25}=1 \rightarrow(1)

Comparing ~(1)~ with ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get

~ a^2=25 \Rightarrow a=5, ~~b^2=4 \Rightarrow b=2.

The length of the latus rectum is 

\frac{2b^2}{a}=2 \times \frac 45=\frac 85~~\text{unit.}

Now, eccentricity of the ellipse

(e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{4}{25}}=\sqrt{\frac{25-4}{25}}=\frac{\sqrt{21}}{5}

The co-ordinates of foci are 

(0, \pm ae)=(0, \pm 5 \times \frac{\sqrt{21}}{5})=(0, \pm \sqrt{21}).

2.~ Find the length of the latus rectum of the ellipse ~\frac{x^2}{9}+\frac{y^2}{16}=1.

Solution.

We have, the given equation of ellipse ~\frac{x^2}{9}+\frac{y^2}{16}=1 \rightarrow(1)

Comparing ~(1)~ with ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1~ we get,

~b^2=9 \Rightarrow b=3,~~ a^2=16 \Rightarrow a=4.

So, the length of the latus rectum is given by

\frac{2b^2}{a}=2 \times \frac 94=\frac 92~~\text{unit.}

3.~ Calculate the eccentricity of the ellipse ~\frac{x^2}{169}+\frac{y^2}{144}=1.

Solution.

Comparing the given ellipse with ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get, ~a^2=169,~b^2=144.

So, the eccentricity of the ellipse is given by 

(e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{144}{169}}=\sqrt{\frac{169-144}{169}} \\ \therefore~~ e=\sqrt{\frac{25}{169}}=\frac{5}{13}.

4.(i)~ Find the equations of the directrices of the ellipse ~x^2+4y^2=4.

Solution.

The given equation of the ellipse can be written as 

~\frac{x^2}{4}+\frac{y^2}{1}=1\rightarrow(1)

Comparing ~(1)~ with ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get, ~a^2=4,~b^2=1.

\therefore~ e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 14}=\sqrt{\frac{4-1}{4}}=\frac{\sqrt{3}}{2}.

So, the equations of the directrices of the given ellipse are

x=\pm \frac ae=\pm \frac{2}{\sqrt{3}/2}=\pm \frac{4}{\sqrt{3}} \\ \therefore~ \sqrt{3}x= \pm 4.

(ii)~ Find the distance between the foci of the ellipse ~3x^2+4y^2=12.

Solution.

The equation of the ellipse can be written as ~\frac{x^2}{4}+\frac{y^2}{3}=1\rightarrow(1)

Comparing ~(1)~ with ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,~~(a^2>b^2)~ we get, ~a^2=4 \Rightarrow a=2,~~b^2=3.

Now, the eccentricity ~(e)~ of the ellipse (1) is 

~\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 34}=\sqrt{\frac{4-3}{4}}=\sqrt{\frac14}=\frac 12.

So, the distance between the foci 

2ae=2 \times 2 \times \frac 12=2~~\text{unit.}

5.~ Find the eccentricity of the ellipse if

(i)~ the length of the latus rectum is equal to half the minor axis of the ellipse.

Solution.

Let the equation of the ellipse be ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.

Now, the length of the latus rectum =\frac{2b^2}{a}~ and the length of the half the minor axis =b~ unit.

So, by condition, 

~\frac{2b^2}{a}=b \Rightarrow 2b=a.

\therefore~ e\\=\sqrt{1-\frac{b^2}{a^2}}\\=\sqrt{1-\frac{b^2}{4b^2}}\\=\sqrt{1-\frac 14}\\=\frac{\sqrt{3}}{2}.

(ii)~ the length of the minor axis is equal to half the distance between the foci of the ellipse.

Solution.

Given :

Minor axis= \frac 12 \times (Distance between the foci)

\text{or,}~~ 2b=\frac 12 \times 2ae \\ ~~~\text{or,}~~ 2b=ae \\~~~ \therefore~ b=\frac 12 ae.

\text{Now,}~e=\sqrt{1-\frac{b^2}{a^2}} \\ \text{or,}~~ e^2=1-\frac{1}{a^2} \times \left(\frac 12 ae\right)^2 \\ \text{or,}~~ e^2=1-\frac{1}{a^2} \times \frac 14 a^2e^2 \\ \text{or,}~~ 4e^2=4-e^2 \\ \text{or,}~~ 5e^2=4 \\ \text{or,}~~ e=\sqrt{\frac 45}=\frac{2}{\sqrt{5}}.

(iii)~ the length of minor axis is equal to the distance between the later recta. 

Solution.

We know that the distance between the foci of the ellipse =2ae,~ where ~a=\frac 12 \times \text{(length of the major axis)},\\e=\text{eccentricity}=\sqrt{1-\frac{b^2}{a^2}}\rightarrow(1),\\2b=\text{length of the minor axis.} 

By question,

~ 2ae=2b \\ \text{or,}~~ ae=b \\ \text{or,}~~ e=\frac ba\rightarrow(2)

So, by ~(1)~ and ~(2)~ we get,

~e^2=1-\frac{b^2}{a^2}=1-e^2 \\ \text{or,}~~ 2e^2=1 \\ \therefore~ e=\frac{1}{\sqrt{2}}.

6.(i)~ If the ellipses ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ and ~\frac{x^2}{p^2}+\frac{y^2}{q^2}=1~ have same eccentricity, show that ~aq=bp.

We have the equations of two ellipses which are

~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\rightarrow(1) ,~~\frac{x^2}{p^2}+\frac{y^2}{q^2}=1 \rightarrow(2)

The eccentricity (e_1)~ of ~(1)

e_1=\sqrt{1-\frac{b^2}{a^2}}

The eccentricity (e_2)~ of ~(2)

e_2=\sqrt{1-\frac{q^2}{p^2}} 

\because ~ e_1=e_2 \\ \therefore~ \sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{q^2}{p^2}} \\ \text{or,}~~ 1-\frac{b^2}{a^2}=1-\frac{q^2}{p^2} \\ \text{or,}~~  \frac{b^2}{a^2}=\frac{q^2}{p^2} \\ \text{or,}~~ a^2q^2=b^2p^2 \\ \text{or,}~~  aq=bp.

(ii)~ The ellipse ~\frac{x^2}{169}+\frac{y^2}{25}=1~ has the same eccentricity as the ellipse  ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~. Find the ratio ~\frac ab.

Solution.

We have the given equation of ellipse ~\frac{x^2}{169}+\frac{y^2}{25}=1\rightarrow(1)

The eccentricity of ~(1),

 (e)=\sqrt{1-\frac{25}{169}}=\sqrt{\frac{169-25}{169}} \\ \therefore~ e=\sqrt{\frac{144}{169}}=\frac{12}{13}

Again, the eccentricity of ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ is

~e=\sqrt{1-\frac{b^2}{a^2}} \\ \text{or,}~~ e^2=1-\frac{b^2}{a^2} \\ \text{or,}~~ \left(\frac{12}{13}\right)^2=1-\frac{b^2}{a^2} \\ \text{or,}~~ \frac{b^2}{a^2}=1-\frac{144}{169}=\frac{169-144}{169} \\ \text{or,}~~ \frac{b^2}{a^2}=\frac{25}{169} =\left(\frac{5}{13}\right)^2 \\ \text{or,}~~ \frac ba=\frac{5}{13} \\ \therefore~ \frac ab=\frac{13}{5}.

7.~ Find the positions of the points ~(i)~(-3,1)~~(ii)~(-2,-3)~ and ~(iii)~(5,-2)~ with respect to the ellipse ~3x^2+4y^2=48.

Solution.

The equation of the ellipse can be written as ~3x^2+4y^2-48=0

Case-1 :

~3(-3)^2+4 \times 1^2-48=27+4-48=-17<0

So, the point ~(-3,1)~ lies inside the ellipse.

Case-2:

~3(-2)^2+4(-3)^2-48=12+36-48=0

So, the point ~(-2,-3)~ lies on the ellipse.

Case-3:

~3 \times 5^2+4(-2)^2-48=75+16-48=43>0

So, the point ~(5,-2)~ lies outside the ellipse.

8.~ For what values of ~a^2~ does the point ~(2\sqrt{3},1)~ lie outside the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{4}=1.

9.~ The co-ordinates of a point on the ellipse ~9x^2+16y^2=144~ are ~\left(2,\frac{3\sqrt{3}}{2}\right)~ ; find the eccentric angle of the point.

Solution.

The equation of the given ellipse can be written in standard form as 

~\frac{x^2}{16}+\frac{y^2}{9}=1 \Rightarrow~(x/4)^2+(y/3)^2=1 \rightarrow(1)

Any point on ~(1)~ can be taken as ~(4 \cos\phi, 3\sin\phi).

Now, by question, we can have 

~2=4 \cos\phi \Rightarrow \cos\phi=\frac 24=\frac 12,\\~\frac{3\sqrt{3}}{2}=3\sin\phi \Rightarrow \sin\phi=\frac{\sqrt{3}}{2}.

\therefore~\tan\phi=\frac{\sin\phi}{\cos\phi}=\sqrt{3} \\ \text{or,}~~\phi=\frac{\pi}{3}=60^{\circ}.

Hence, the eccentric angle of the point is ~60^{\circ}.

10.~ Find the co-ordinates of the point on the ellipse ~x^2+2y^2=4~ whose eccentric angle is ~60^{\circ}.

Solution.

The equation of the ellipse can be written as ~\frac{x^2}{4}+\frac{y^2}{2}=1\rightarrow(1)

Comparing ~(1)~ with the general equation of the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~ we get, ~ a^2=4 \Rightarrow a=2,~~b^2=2 \Rightarrow b=\sqrt{2}.

So, any point on the given ellipse with the eccentric angle ~60^{\circ}~ can be written as 

~x=a \cos 60^{\circ}=2 \times \frac 12=1,~y=b\sin 60^{\circ}=\sqrt{2}\times \frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}.

So, the co-ordinates of the point on the ellipse ~x^2+2y^2=4~ whose eccentric angle is ~60^{\circ}~ is given by ~\left(1,\frac{\sqrt{6}}{2}\right).

11.~ If the ellipse ~\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1~~(a_1^2>b_1^2)~ prove that ~a_1b_2=a_2b_1.

Solution.

We have the equations of two ellipses which are

\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1\rightarrow(1),~~ \frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1\rightarrow(2)

The eccentricity (e_1)~ of ~(1)

e_1=\sqrt{1-\frac{b_1^2}{a_1^2}}

The eccentricity (e_2)~ of ~(2)

e_2=\sqrt{1-\frac{b_2^2}{a_2^2}} 

\because~ e_1=e_2 \\ \therefore~\sqrt{1-\frac{b_1^2}{a_1^2}}=\sqrt{1-\frac{b_2^2}{a_2^2}} \\ \text{or,}~~1-\frac{b_1^2}{a_1^2}=1-\frac{b_2^2}{a_2^2} \\ \text{or,}~~\frac{b_1^2}{a_1^2}=\frac{b_2^2}{a_2^2}  \\ \text{or,}~~ a_1^2b_2^2=a_2^2b_1^2  \\ \text{or,}~~a_1b_2=a_2b_1

Leave a Comment