Plane | Part-3 | Ex-5B

In the previous article , we have solved few VSA type questions of Plane Chapter (Ex-2B) of S N De Mathematics(Chhaya). In the following article, we are going to discuss/solve VSA (Very Short Answer) Type Questions of S.N.Dey Mathematics-Class 12 of the chapter Plane (Ex-5B).
Plane | Part-3 | Ex-5B- S N De Math Solutions
Plane | Part-3 | Ex-5B- S N De Math Solutions

8. Find the distance of the point ~(-1, -5, -10)~ from the point of intersection of the line ~\vec{r}=(2\hat{i}-\hat{j}+2\hat{k})+\lambda(3\hat{i}+4\hat{j}+2\hat{k})~  and the plane ~\vec{r} \cdot (\hat{i}-\hat{j}+\hat{k})=5. [NCERT]

Solution.

Let the position vector of the point of intersection be ~(3\lambda+2) \hat{i}+(4\lambda-1)\hat{j}+(2\lambda+2)\hat{k}.

This point lies on the plane ~\vec{r} \cdot (\hat{i}-\hat{j}+\hat{k})=5.

\therefore~~ (3\lambda+2) \times 1+(4\lambda-1) \times (-1)+(2\lambda+2) \times 1=5 \\~~~ \text{or,}~~ 3\lambda+2-4\lambda+1+2\lambda+2=5 \\~~~ \text{or,}~~ \lambda+5=5 \Rightarrow \lambda=0.

\therefore~~ The position vector of the point of intersection is ~(2\hat{i}-\hat{j}+2\hat{k})~~ i.e. ~(2,-1,2).

So, the distance between the points ~(2,-1,2)~ and ~(-1,-5,-10)~ is 

\sqrt{(2+1)^2+(-1+5)^2+(2+10)^2}=\sqrt{3^2+4^2+12^2}=\sqrt{169}=13~~\text{unit}

9. Find the value of ~\lambda~ such that the line ~\frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{-4}~ is perpendicular to the plane ~3x-y-2z=7.

Solution.

The given straight line is ~~ \frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{-4} \longrightarrow (1)~ and the plane is ~~3x-y-2z=7 \longrightarrow (2)

Since the straight line (1) is perpendicular to the plane (2),

\therefore~~ \frac 63=\frac{\lambda}{-1}=\frac{-4}{-2} \\ \text{or,}~~ 2=-\lambda=2 \Rightarrow \lambda =-2~~\text{(ans.)}

10.  Find the distance of the point with position vector ~2\hat{i}+\hat{j}-\hat{k}~ from the plane ~\vec{r} \cdot (\hat{i}-2\hat{j}+4\hat{k})=9.

Solution.

The distance of the point ~(2\hat{i}+\hat{j}-\hat{k})~ from the given plane ~~ \vec{r} \cdot (\hat{i}-2\hat{j}+4\hat{k})-9=0~,

=\frac{|(2\hat{i}+\hat{j}-\hat{k}) \cdot (\hat{i}-2\hat{j}+4\hat{k})-9|}{|\hat{i}-2\hat{j}+4\hat{k}|}=\frac{|2-2-4-9|}{\sqrt{1^2+(-2)^2+4^2}}=\frac{|-13|}{\sqrt{1+4+16}}=\frac{13}{\sqrt{21}}~~ \text{unit}

11. Find the distance between the parallel planes ~\vec{r} \cdot (2\hat{i}-3\hat{j}+6\hat{k})=5~ and ~\vec{r} \cdot (6\hat{i}-9\hat{j}+18\hat{k})+20=0. 

Solution.

The given planes are ~\vec{r} \cdot (2\hat{i}-3\hat{j}+6\hat{k})=5 \longrightarrow(1) and 

~\vec{r} \cdot (6\hat{i}-9\hat{j}+18\hat{k})+20 =0 \\ \text{or,}~~ 3\vec{r} \cdot (2\hat{i}-3\hat{j}+6\hat{k})+20=0 \\ \text{or,}~~ \vec{r} \cdot (2\hat{i}-3\hat{j}+6\hat{k})=-\frac{20}{3} \longrightarrow(2)

Clearly, the planes (1) and (2) are parallel to each other.

So, the distance between them is 

=\frac{\left|5+\frac{20}{3}\right|}{\sqrt{2^2+(-3)^2+6^2}}=\frac{\left|\frac{35}{3}\right|}{\sqrt{4+9+36}}=\frac{35/3}{7}=\frac 53~~\text{unit.}

12. If the line ~\vec{r}=(\hat{i}-2\hat{j}+\hat{k})+t(2\hat{i}+\hat{j}+2\hat{k})~ is parallel to the plane ~\vec{r} \cdot (3\hat{i}-2\hat{j}+m\hat{k})=14~, find the value of ~m

Solution.

The given straight line is ~\vec{r}=(\hat{i}-2\hat{j}+\hat{k}) +t(2\hat{i}+\hat{j}+2\hat{k})~~(t \neq 0) \longrightarrow(1) and the given plane is ~~\vec{r} \cdot (3\hat{i}-2\hat{j}+m\hat{k})=14 \longrightarrow(2)

Since the straight line (1) is parallel to the plane (2), so

~(2\hat{i}+\hat{j}+2\hat{k}) \cdot (3\hat{i}-2\hat{j}+m\hat{k})=0 \\ \text{or,}~~ 6-2+2m=0 \Rightarrow m=-\frac 42=-2.

13. Find the equation of the plane which contains the line of intersection of the planes ~\vec{r} \cdot (\hat{i}+2\hat{j}+3\hat{k})-4=0~ and ~\vec{r} \cdot (2\hat{i}+\hat{j}-\hat{k})=0~ which is perpendicular to the plane ~\vec{r} \cdot (5\hat{i}+3\hat{j}-6\hat{k})+8=0.

Solution.

\vec{r} \cdot (\hat{i}+2\hat{j}+3\hat{k})-4=0 \longrightarrow(1),~~\vec{r}\cdot (2\hat{i}+\hat{j}-\hat{k})=0 \longrightarrow(2).

The equation of the plane which contains the line of intersection of planes (1) and (2) is

~[\vec{r} \cdot (\hat{i}+2\hat{j}+3\hat{k})-4]+\lambda \vec{r} \cdot (2\hat{i}+\hat{j}-\hat{k})=0 \\ \text{or,}~~ \vec{r} \cdot [(2\lambda+1)\hat{i}+(\lambda+2)\hat{j}+(-\lambda+3)\hat{k}]-4=0 \longrightarrow(3)

The plane (3) is perpendicular to the plane ~\vec{r} \cdot (5\hat{i}+3\hat{j}-6\hat{k})+8=0.

\therefore~~ 5(2\lambda+1)+3(\lambda+2)-6(-\lambda+3)=0 \\ \text{or,}~~ 10\lambda+5+3\lambda+6+6\lambda-18=0 \\ \text{or,}~~ 19\lambda-7=0 \Rightarrow \lambda=\frac{7}{19}.

Now, we calculate the following values in (3).

2\lambda+1=2 \times \frac{7}{19}+1=\frac{33}{19},~~ \lambda+2=\frac{7}{19}+2=\frac{45}{19},~~ -\lambda+3=-\frac{7}{19}+3=\frac{50}{19}.

Hence, from (3) we get,

~\vec{r} \cdot \left[\frac{33}{19}\hat{i}+\frac{45}{19}\hat{j}+\frac{50}{19}\hat{k}\right]-4=0 \\ \text{or,}~~ \vec{r} \cdot (33\hat{i}+45\hat{j}+50\hat{k})-76=0 \longrightarrow(4)

So, equation (4) represents the vector equation of the required plane.

14. Find the equation of the plane passing through the points ~(3, 4, 1)~ and ~(0, 1, 0)~ and parallel to the line ~\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}.  [CBSE ~~'08]

Solution.

The equation of the plane passing through the point ~(3,4,1)~ is 

~a(x-3)+b(y-4)+c(z-1)=0 \longrightarrow(1)

Since the plane (1) is passing through the point ~(0,1,0),

~a(0-3)+b(1-4)+c(0-1)=0 \\ \text{or,}~~ -3a-3b-c=0 \Rightarrow 3a+3b+c=0 \longrightarrow(2)

Since the plane is parallel to the given straight line  ~\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5},

\therefore~~ 2a+7b+5c=0 \longrightarrow(3)

From (2) and (3) we get by cross-multiplication,

~~\frac{a}{15-7}=\frac{b}{2-15}=\frac{c}{21-6} \Rightarrow \frac a8=\frac{b}{-13}=\frac{c}{15}.

\therefore~~ The required equation of the plane is 

~~8(x-3)-13(y-4)+15(z-1)=0 \\ \text{or,}~~ 8x-24-13y+52+15z-15=0 \\ \text{or,}~~ 8x-13y+15z+13=0~~\text{(ans.)}

15. Find the coordinates of the point where the line through the points ~A(3, 4, 1)~ and ~B~(5, 1, 6)~ crosses the xy-plane.

Solution.

The equation of the any straight line through the points ~A(3,4,1)~ and ~B(5,1,6)~ can be written as 

~\frac{x-3}{5-3}=\frac{y-4}{1-4}=\frac{z-1}{6-1} \\ \text{or,}~~ \frac{x-3}{2}=\frac{y-4}{-3}=\frac{z-1}{5}=\lambda (\neq 0,\text{(say)}) \longrightarrow(1)

So, any point on the straight line (1) can be written as ~~(2\lambda+3,-3\lambda+4,5\lambda+1).

If this straight line crosses the xy-plane, then ~5\lambda+1=0~ as on the xy-plane ~~z=0.

\therefore~~ \lambda=-\frac 15.

\text{Also,}~~ 2\lambda+3=2 \times \left(-\frac 15\right)+3=-\frac 25+3=\frac{-2+15}{5}=\frac{13}{5},\\~~ -3\lambda+4=-3 \times \left(-\frac 15\right)+4=\frac 35+4=\frac{23}{5}.

\therefore~~ The co-ordinates of the point where the line crosses the xy-plane is 

~~(2\lambda+3,-3\lambda+4,0)=\left(\frac{13}{5},\frac{23}{5},0\right).

Leave a Comment