Circle | Part-7 | S N Dey

In the previous article , we have completed the discussions about the Short Answer Type Questions. In this article, we will discuss 10 Long Answer type Questions from Chhaya Mathematics , Class 11 (S N De book ).

Circle(Long Answer Type Questions), S N Dey Solution Class 11
Long Answer Type Questions (1-10) | Circle | S N Dey Solution

1.Find the equation to the circles which touch the ~y-axis and pass through ~(-2,1)~ and ~(-4,3).

Solution.

Circle, S N Math Solution , Class 11

The equation of the circle touching the ~y-axis can be written as

~(x-a)^2+(y-\beta)^2=a^2~ where ~(a,\beta)~ is the centre of the circle with radius ~a~ unit.

Since the circle passes through ~(-2,1)~,

(-2-a)^2+(1-\beta)^2=a^2 \\ \text{or,}~~(2+a)^2+(1-\beta)^2=a^2  \\ \text{or,}~~4+4a+a^2+1-2\beta+\beta^2=a^2 \\ \text{or,}~~ \beta^2+4a-2\beta+5=0 \rightarrow(1)

Again, since the circle passes through ~(-4,3)~,

(-4-a)^2+(3-\beta)^2=a^2 \\  \text{or,}~~ (4+a)^2+(3-\beta)^2=a^2 \\ \text{or,}~~16+8a+a^2+9-6\beta+\beta^2=a^2 \\  \text{or,}~~ \beta^2+8a-6\beta+25=0\rightarrow(2)

Subtracting ~(1)~ from ~(2),~ we get

4a-4\beta+20=0 \\  \text{or,}~~ 4(a-\beta+5)=0 \\ \therefore a=\beta-5 \rightarrow(3)

Now, from ~(1)~ and ~(2)~ we get,

\beta^2+4(\beta-5)-2\beta+5=0 \\  \text{or,} ~~ \beta^2+4\beta-20-2\beta+5=0 \\ \text{or,} ~~ \beta^2+2\beta-15=0 \\  \text{or,} ~~ \beta^2+5\beta-3\beta-15=0 \\  \text{or,} ~~\beta(\beta+5)-3(\beta+5)=0 \\ \text{or,} ~~ (\beta+5)(\beta-3)=0 \\ \text{or,} ~~\beta=-5,3 \rightarrow(4)

\text{For}~\beta=-5,3 ~, corresponding values of ~a=-10,-2~~[\text{By (3)}].

So, the required equation of circle (for ~a=-10,~\beta=-5) is

(x+10)^2+(y+5)^2=(-10)^2 \\ \text{or,}~~ x^2+20x+100+y^2+10y+25=100 \\ \text{or,}~~ x^2+y^2+20x+10y+25=0.

and also the required equation of circle (for ~a=-2,~\beta=3) is

(x+2)^2+(y-3)^2=(-2)^2 \\ \text{or,}~~ x^2+4x+4+y^2-6y+9=4 \\ \text{or,}~~ x^2+y^2+4x-6y+9=0.

2. If two straight lines ~3x-2y=8~ and ~2x-y=5~ lie along two diameters of a circle , which touches the ~x-axis, find the equation of the circle.

Solution.

According to the problem, center of the circle will be the point where both lines cross each other. Now, solving two straight lines ~3x-2y=8~ and ~2x-y=5~ we get, ~x=2,~y=-1.

Circle, S N Dey Math Solution Class 11

So, the centre of the circle ~(2,-1).

Since, the circle touches ~x-axis, so the equation of the circle is

(x-2)^2+(y+1)^2=1 \\ \text{or,}~~ x^2+y^2-4x+2y+4=0.

3. A circle touches the lines ~x=0,~ y=0~ and ~x+y=1.~ If the centre of the circle lies in the first quadrant , show that there are two such circles and find their equations . Specify which of these is inscribed within the triangle formed by the given lines.

Solution.

Since the circle touches both ~x-axis and ~y-axis , the centre of the circle is ~(a, a). So, the equation of the circle is ~(x-a)^2+(y-a)^2=a^2 \rightarrow(1).

Since ~x+y=1~ is a tangent to the circle ~(1),~ so the distance of ~x+y=1~ from the centre ~(a,a)~ of the circle = the radius of the circle.

\text{So,}~ \frac{|2a-1|}{\sqrt{1^2+1^2}}=a \\ \text{or,} ~~\frac 12(2a-1)^2=a^2   \\ \text{or,} ~~  4a^2-4a+1=2a^2 \\ \text{or,} ~~  2a^2-4a+1=0   \\ \text{or,} ~~  a=\frac{4 \pm \sqrt{(-4)^2-4 \times 2 \times 1}}{2 \times 2}=\frac 14(4 \pm \sqrt{8})   \\ \text{or,} ~~ a=\frac 12(2 \pm \sqrt{2})

So, the equation of the circle ~ (x-a)^2+(y-a)^2=a^2~ where ~a=\frac 12(2 \pm \sqrt{2}).

Now, since the points ~\left(\frac12(2-\sqrt{2}),\frac12(2-\sqrt{2} )\right)~ and ~(0,0)~ lie on the same side of the straight line ~x+y=1~, the circle with radius ~\frac 12(2-\sqrt{2})~ unit is inscribed within the triangle formed by the given lines.

4. Find the equations to the circles which which touch the axis of ~y- at a distance ~+4~ from the origin and intercept a length ~6~ unit on the axis of ~x.

Solution.

Let the equation of the circle be ~(x-a)^2+(y-4)^2=a^2 \rightarrow(1).

\text{By (1), we get,}

x^2-2ax+a^2+y^2-8y+16=a^2 \\ \text{or,}~~ x^2+y^2-2ax-8y+16=0\rightarrow(2).

Now, the the length of the intercept on ~x-axis

2\sqrt{a^2-16}=6 \\ \text{or,}~~ a^2-16=(6/2)^2=9  \\ \text{or,}~~ a^2=9+16  \\ \text{or,}~~ a=\pm \sqrt{25}=\pm 5 \rightarrow(3).

By ~(3), we get two circles by two corresponding values of ~a.

\therefore~ Using ~(2),~(3)~ two circles are given by

x^2+y^2-2x (\pm 5)-8y+16=0 \\ \text{or,} ~~ x^2+y^2 \pm 10x-8y+16=0.

5. A circle passes through the point ~(-2,1)~ and touches the straight line ~3x-2y=6~ at the point ~(4,3)~. Find its equation.

Solution.

6. Find the equation of the circle which touches the ~x-axis at a distance ~+5~ unit from the origin and cuts off an intercept of length ~24~unit from the ~y-axis.

Solution.

Let the equation of the circle be ~(x-5)^2+(y-a)^2=a^2\rightarrow(1)

The circle ~(1)~ can be written as

x^2-10x+5^2+y^2-2ay+a^2=a^2 \\ \text{or,}~~ x^2+y^2-10x-2ay+25=0\rightarrow(2)

The length of the intercept on ~y-axis

2\sqrt{a^2-25}=24   \\ \text{or,}~~ a^2-25=(24/2)^2  \\ \text{or,}~~a^2=144+25 \\ \text{or,}~~ a=\pm\sqrt{169}=\pm 13 \rightarrow(3).

So, by ~(2)~ and ~(3)~ we get the equation of the circle as follows :

~x^2+y^2-10x \pm26y+25=0.

7. Show that the circles ~x^2+y^2-4x+6y+8=0~ and ~x^2+y^2-10x-6y+14=0~ touch each other externally ; find the co-ordinates of their point of contact.

Solution.

Two given circles are

~x^2+y^2-4x+6y+8=0 \rightarrow(1),\\ x^2+y^2-10x-6y+14=0\rightarrow(2).

Comparing ~(1)~ with ~x^2+y^2+2gx+2fy+c=0~ we get,

2g=-4 \Rightarrow -g=4/2=2,\\~~2f=6 \Rightarrow -f=-(6/2)=-3,\\~~c=8\\~\sqrt{g^2+f^2-c}=\sqrt{4+9-8}=\sqrt{5}.

So, for the circle ~(1),~ centre ~C_1 \equiv (-g,-f)=(2,-3)~ and radius (r_1)=\sqrt{g^2+f^2-c}=\sqrt{5}.

Comparing ~(2)~ with ~x^2+y^2+2gx+2fy+c=0~ we get,

2g=-10 \Rightarrow -g=10/2=5,\\~~2f=-6 \Rightarrow -f=6/2=3,\\~~c=14\\~\sqrt{g^2+f^2-c}=\sqrt{25+9-14}=\sqrt{20}=2\sqrt{5}.

So, for the circle ~(2),~ centre ~C_1 \equiv (-g,-f)=(5,3)~ and radius (r_1)=\sqrt{g^2+f^2-c}=2\sqrt{5}.

Distance (~C_1C_2~) between the centres of two circles

=\sqrt{(5-2)^2+(3+3)^2}\\~~~=\sqrt{9+36}\\~~~=\sqrt{45}\\~~~=\sqrt{5 \times 9}\\~~~=3\sqrt{5}\\~~~=\sqrt{5}+2\sqrt{5}\\~~~=r_1+r_2

So, two circles touch each other externally.

Again, ~r_1 :r_2=1 :2~~ so that the co-ordinates of their point of contact is

\left(\frac{1\times 5+ 2\times 2}{1+2},\frac{1 \times 3+2 \times (-3)}{1+2}\right)=(3,-1).

8. Prove that the circles ~x^2+y^2+4x-10y-20=0~ and ~x^2+y^2-4x-4y+4=0~ touch each other internally. Find the equation of their common tangent.

Solution.

Two given circles are

x^2+y^2+4x-10y-20=0\rightarrow(1),\\~~~ x^2+y^2-4x-4y+4=0\rightarrow(2).

Comparing ~(1)~ with ~x^2+y^2+2gx+2fy+c=0~ we get,

2g=4 \Rightarrow -g=-4/2=-2,\\~~~2f=-10 \Rightarrow -f=10/2=5,\\~~~c=-20\\~~~\sqrt{g^2+f^2-c}=\sqrt{4+25+20}=\sqrt{49}=7.

So, for the circle ~(1),~ centre ~C_1 \equiv (-g,-f)=(-2,5)~ and radius (r_1)=\sqrt{g^2+f^2-c}=7.

In a similar way, from ~(2)~ we get, the centre ~C_2 \equiv (-g,-f)=(2,2)~ and radius (r_2)=\sqrt{g^2+f^2-c}=\sqrt{4+4-4}=2.

Distance (~C_1C_2~) between the centres of two circles

\sqrt{(2+2)^2+(2-5)^2}=5=7-2=r_1-r_2\rightarrow(3).

Hence, by ~(3),~ we can conclude that two circles touch each other internally.

Now, subtracting ~(2)~ from ~(1),~ we get

8x-6y-24=0 \Rightarrow 4x-3y=12 \rightarrow(4)

So, the equation in ~(4)~, represents the equation of their common tangent.

9. If the circles ~x^2+y^2+2ax+c^2=0~ and ~x^2+y^2+2by+c^2=0~ touch each other , prove that , ~\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}.

Solution.

Two given circles are

x^2+y^2+2ax+c^2=0 \rightarrow(1),~~ x^2+y^2+2by+c^2=0\rightarrow(2).

The centre of the circle ~(1)~ is ~A(-a,0)~ and the radius ~(r_1)=\sqrt{a^2-c^2}~\text{unit}.

The centre of the circle ~(2)~ is ~B(0,-b)~ and the radius ~(r_2)=\sqrt{b^2-c^2}~\text{unit}.

AB=r_1 \pm r_2  \\ \text{or,}~~ \sqrt{a^2+b^2}=\sqrt{a^2-c^2} \pm \sqrt{b^2-c^2}  \\ \text{or,}~~ a^2+b^2 =a^2-c^2+b^2-c^2 \pm 2\sqrt{(a^2-c^2)(b^2-c^2)} \\ \text{or,}~~ 2c^2=\pm2\sqrt{a^2b^2-c^2(a^2+b^2)+c^4} \\ \text{or,}~~c^4=a^2b^2-c^2(a^2+b^2)+c^4 \\ \text{or,}~~ c^2(a^2+b^2)=a^2b^2 \\ \text{or,}~~ \frac{a^2+b^2}{a^2b^2}=\frac{1}{c^2} \\ \text{or,}~~\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}~~\text{(proved)}

10. Prove that the circles ~x^2+y^2-2x-4y-12=0~ and ~3x^2+3y^2-2x+4y-140=0~ touch each other. Find the co-ordinates of the point of contact.

Solution.

Two given equation of circles are ~x^2+y^2-2x-4y-12=0\rightarrow(1)~ and ~3x^2+3y^2-2x+4y-140=0\rightarrow(2).

Clearly, centre of circle ~(1)~ is ~A(1,2)~

and radius ~(r_1) is

=\sqrt{g^2+f^2-c}\\~~=\sqrt{(-1)^2+(-2)^2-(-12)}\\~~=\sqrt{1+4+12}\\~~=\sqrt{17}~\text{unit.}

Again, the circle ~(2)~ can be rewritten as ~x^2+y^2-(2/3)x+(4/3)y-\frac{140}{3}=0~\rightarrow(3) ans so centre of circle ~(3)~ is ~\left(\frac 13,-\frac 23\right).

Also, the radius (r_2) of circle of ~(3)~ is

=\sqrt{g^2+f^2-c}\=\sqrt{(-1/3)^2+(2/3)^2-(-140/3)}\\~~=\sqrt{\frac 19+\frac 49+\frac{140}{3}}\\~~=\sqrt{\frac{1+4+420}{9}}\\~~=\sqrt{\frac{425}{9}}\\~~=\sqrt{\frac{25 \times 17}{9}}\\~~=\frac{5\sqrt{17}}{3}

r_2-r_1=\frac{5\sqrt{17}}{3}-\sqrt{17}=\frac{2\sqrt{17}}{3}\rightarrow(4)

Distance between the centres ~(AB)~ of two circles are

=\sqrt{(1-\frac 13)^2+(2+\frac 23)^2}\\~~=\sqrt{(2/3)^2+(8/3)^2}\\~~=\frac 13\sqrt{2^2+8^2}\\~~=\frac 13 \sqrt{4+64}\\~~=\frac 13\sqrt{68}\\~~=\frac{2\sqrt{17}}{3}\rightarrow(5)

So, from ~(4)~ and ~(5)~ we get, ~r_2-r_1=AB.

So, two circles touch each other internally.

From the figure, we notice that

AB : OB\\~~=\frac{2\sqrt{17}}{3} : \sqrt{17}\\~~=\frac 23: 1\\~~= 2: 3

Suppose that two circles touch each other at the point ~O(x,y).

\therefore~ (1,2)=\left(\frac{2x+ 3 \times \frac 13}{2+3},\frac{2y+3(-2/3)}{2+3}\right)=\left(\frac{2x+1}{5},\frac{2y-2}{5}\right)\rightarrow(6)

From ~(6),~ we get

1=\frac{2x+1}{5} \Rightarrow x=2~~\text{and}~~2=\frac{2y-2}{5} \Rightarrow y=6.

Hence, the co-ordinates of the point of contact is ~(2,6).

To download full PDF solution of Circle (Chhaya Mathematics, Class 11 ), click here.

Leave a Comment