Ellipse (S.N.Dey)|Part-2|Ex-5

In this article, we will do few solutions of Short Answer Type Questions of Ellipse Chapter of  S.N.Dey mathematics, Class 11.
Ellipse S N Dey Solutions (Short Answer Type Questons )

1.~ Find ~(i)~ the lengths of axes ~(ii)~ the length of latus rectum ~(iii)~ coordinates of vertices ~(iv)~ eccentricity ~(v)~ co-ordinates of foci and ~(vi)~ equations of directrices of each of the following ellipses :

(a)~16x^2+25y^2=400~~(b)~9x^2+4y^2=36 ~~(c)~x^2+4y^2=16 \\(d)~4x^2+3y^2=1.

Solution (a).

The given equation of the ellipse can be written as ~\frac{x^2}{25}+\frac{y^2}{16}=1\rightarrow(1)

Comparing ~(1)~ with the general form of the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~(a^2>b^2)~ we get,

a^2=25 \Rightarrow a=5 ~( \because a>0),\,\,\, b^2=16 \Rightarrow b=4~(\because b>0).

Clearly, major axis of the ellipse ~(1)~ is along ~x- axis , minor axis of the given ellipse is along ~y- axis and the centre of the ellipse is at ~(0,0).

(i) The length of the major axis is (2a)=2 \times 5=10~\text{unit} and 

the length of the minor axis is ~(2b)=2 \times 4=8~\text{unit}

(ii) The length of the latus rectum is 

\frac{2b^2}{a}=\frac{2 \times 16}{5}=\frac{32}{5}~~\text{unit.}

(iii) The co-ordinates of vertices ~(\pm a,0)=(\pm 5,0).

(iv) Eccentricity of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{25-17}{25}}=\frac 35.

(v) The co-ordinates of foci are given by 

~(\pm ae,0)=\left( \pm 5 \cdot \frac 35,0\right)=(\pm 3,0).

(vi) Equations of directrices are given by 

x=\pm \frac ae=\pm \frac{5}{3/5} \\ \text{or,}~~ x= \pm \frac{25}{3} \\ \therefore ~3x= \pm 25.

Solution(b)

The given equation of the ellipse can be written as ~\frac{x^2}{4}+\frac{y^2}{9}=1\rightarrow(1)

Comparing ~(1)~ with the general form of the ellipse ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1~(a^2>b^2)~ we get,

a^2=9 \Rightarrow a=3 ~( \because a>0),\,\,\, b^2=4 \Rightarrow b=2~(\because b>0).

Clearly, major axis of the ellipse ~(1)~ is along ~y- axis , minor axis of the given ellipse is along ~x- axis and the centre of the ellipse is at ~(0,0).

For S N De Free PDF (Bengali Version )download for Ellipse Chapter , click here.

(i) The length of the major axis is (2a)=2 \times 3=6~\text{unit} and 

the length of the minor axis is ~(2b)=2 \times 2=4~\text{unit}

(ii) The length of the latus rectum is 

\frac{2b^2}{a}=\frac{2 \times 4}{3}=\frac83~~\text{unit.}

(iii) The co-ordinates of vertices ~(0,\pm a)=(0,\pm 3).

(iv) Eccentricity of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac49}=\sqrt{\frac{9-4}{9}}=\frac {\sqrt{5}}{3}

(v) The co-ordinates of foci are given by 

~(0,\pm ae)=\left(0,\pm 3 \cdot \frac{\sqrt{5}}{3}\right)=(0,\pm \sqrt{5}).

(vi) Equations of directrices are given by 

y=\pm \frac ae=\pm \frac{3}{\frac{\sqrt{5}}{3}} \\ \text{or,}~~ y= \pm \frac{9}{\sqrt{5}}.

Solution(c)

The given equation of the ellipse can be written as ~\frac{x^2}{16}+\frac{y^2}{4}=1\rightarrow(1)

Comparing ~(1)~ with the general form of the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1~(a^2>b^2)~ we get,

a^2=16 \Rightarrow a=4 ~( \because a>0),~~b^2=4 \Rightarrow b=2~(\because b>0).

Clearly, major axis of the ellipse ~(1)~ is along ~x- axis , minor axis of the given ellipse is along ~y- axis and the centre of the ellipse is at ~(0,0).

(i) The length of the major axis is (2a)=2 \times 4=8~\text{unit} and 

the length of the minor axis is ~(2b)=2 \times 2=4~\text{unit}

(ii) The length of the latus rectum is 

\frac{2b^2}{a}=\frac{2 \times 2^2}{4}=2~~\text{unit.}

(iii) The co-ordinates of vertices ~(\pm a,0)=(\pm 4,0).

(iv) Eccentricity of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{2^2}{4^2}}=\sqrt{1-(1/2)^2}=\sqrt{\frac 34}=\frac{\sqrt{3}}{2}.

(v) The co-ordinates of foci are given by 

~(\pm ae,0)=\left( \pm 4 \cdot \frac{\sqrt{3}}{2},0\right)=(\pm 2\sqrt{3},0).

(vi) Equations of directrices are given by 

x=\pm \frac ae=\pm \frac{4}{\frac{\sqrt{3}}{2}} \\ \text{or,}~~ x= \pm \frac{8}{\sqrt{3}} \\ \therefore ~\sqrt{3}x= \pm 8.

Solution(d)

The given equation of the ellipse can be written as ~\frac{x^2}{1/4}+\frac{y^2}{1/3}=1\rightarrow(1)

Comparing ~(1)~ with the general form of the ellipse ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1~(a^2>b^2)~ we get,

a^2=\frac 13 \Rightarrow a=\frac{1}{\sqrt{3}} ~( \because a>0),\,\,\, b^2=\frac 14 \Rightarrow b=\frac 12~(\because b>0).

Clearly, major axis of the ellipse ~(1)~ is along ~y- axis , minor axis of the given ellipse is along ~x- axis and the centre of the ellipse is at ~(0,0).

(i) The length of the major axis is (2a)=2 \times \frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}}~\text{unit} and 

the length of the minor axis is ~(2b)=2 \times \frac 12=1~\text{unit}

(ii) The length of the latus rectum is 

\frac{2b^2}{a}=\frac{2 \times (1/2)^2}{\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}}{2}~~\text{unit.}

(iii) The co-ordinates of vertices ~(0,\pm a)=\left(0,\pm \frac{1}{\sqrt{3}}\right).

(iv) Eccentricity of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{(1/2)^2}{(1/\sqrt{3})^2}}=\sqrt{1-\frac{3}{4}}=\sqrt{\frac 14}=\frac 12.

(v) The co-ordinates of foci are given by 

~(0,\pm ae)=\left(0,\pm \frac{1}{\sqrt{3}} \cdot \frac12\right)=(0,\pm \frac{1}{2\sqrt{3}}).

(vi) Equations of directrices are given by 

y=\pm \frac ae=\pm \frac{\frac{1}{\sqrt{3}}}{\frac 12} \\ \text{or,}~~ y= \pm \frac{2}{\sqrt{3}} \\ \text{or,}~~ \sqrt{3}y= \pm 2.

2.~ Find the eccentricity and equations of the directrices of the ellipse ~\frac{x^2}{100}+\frac{y^2}{36}=1.~ Show that the sum of the focal distances of any point on this ellipse is a constant.

Solution.

Comparing the given equation of ellipse with the general form of the ellipse ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1~(a^2>b^2)~ we get,

a^2=100 \Rightarrow a=10,~~ b^2=36 \Rightarrow b=6.

Eccentricity of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{36}{100}}=\frac{8}{10}=\frac 45.

Equation of the directrix is given by 

x=\pm \frac ae=\pm \frac{10}{\frac 45} \\ \text{or,}~~ 2x= \pm 25.

Any point on the given ellipse can be written as ~P(10\cos\theta,6\sin\theta).

The co-ordinates of the foci are given by

~(\pm ae,0)=(\pm 10 \times \frac 45,0)=(\pm 8,0).

Now, the sum of the focal distances of the point P is 

=\sqrt{(10\cos\theta-8)^2+36\sin^2\theta}+\sqrt{(10\cos\theta+8)^2+36\sin^2\theta}\\=\sqrt{64\cos^2\theta-160\cos\theta+100}+\sqrt{64\cos^2\theta+160\cos\theta+100}~~[*]\\=\sqrt{(8\cos\theta-10)^2}+\sqrt{(8\cos\theta+10)^2}\\=10-8\cos\theta+8\cos\theta+10~~[\because~ \cos\theta \leq 8< 10]\\=20=\text{constant}

Note[*] : 

(10\cos\theta-8)^2+36\sin^2\theta\\=100\cos^2\theta-160\cos\theta+64+36(1-\cos^2\theta)\\=64\cos^2\theta-160\cos\theta+100.

3.~ Taking major and minor axes as ~x~ and ~y~ -axes respectively, find the equation of the ellipse

(i)~ whose length of major and minor axes are ~6~ and ~5~ respectively.

Solution.

By question, the equation of the ellipse can be written as 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \rightarrow(1)

(i) The length of the major axis ~=2a=6\Rightarrow a=\frac 62=3

and  the length of the minor axis =~2b=5\Rightarrow b=\frac 52

Hence, by ~(1),~ the equation of the ellipse is 

\frac{x^2}{3^2}+\frac{y^2}{(5/2)^2}=1 \\ \text{or,}~~ \frac{x^2}{9}+\frac{y^2}{\frac{25}{4}}=1 \\ \therefore~ 25x^2+36y^2=225.

(ii)~ whose lengths of minor axis and latus rectum are ~4~ and ~2.

Solution.

 Length of the minor axis =2b=4 \Rightarrow b=\frac 42=2.

Length of the latus rectum =\frac{2b^2}{a}=2 \cdot \frac{2^2}{a}=2 \Rightarrow a=4.

Hence, the equation of the ellipse is given by 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{4^2}+\frac{y^2}{2^2}=1 \\ \text{or,}~~\frac{x^2}{16}+\frac{y^2}{4}=1 \\ \text{or,}~~ x^2+4y^2=16.

(iii)~ whose eccentricity is ~\frac 35~ and co-ordinates of foci are ~(\pm 3,0).

Solution.

By question, the equation of the ellipse can be written as 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \rightarrow(1)

The eccentricity (e)=\frac 35.

The co-ordinates of foci ~(\pm ae,0)=(\pm 3,0).

\therefore~ ae=3 \Rightarrow a \cdot \frac 35=3 \Rightarrow a=5.

~e^2=\left(\frac 35\right)^2=\frac{9}{25} \\ \text{or,}~~ 1-\frac{b^2}{a^2}=\frac{9}{25} \\ \text{or,}~~  \frac{b^2}{a^2}=1-\frac{9}{25}=\frac{16}{25} \\ \text{or,}~~ \frac{b^2}{5^2}=\frac{16}{25} \\ \text{or,}~~  \frac{b^2}{25}=\frac{16}{25} \\ \text{or,}~~  b^2=16.

So, the equation of the ellipse is given by 

~\frac{x^2}{25}+\frac{y^2}{16}=1 \\ \therefore ~ 16x^2+25y^2=400.

(iv)~ whose eccentricity is ~\frac{1}{\sqrt{2}}~ and length of latus rectum ~3.

Solution.

e=\frac{1}{\sqrt{2}} \\ \text{or,}~~ e^2=\frac 12 \\ \text{or,}~~  1-\frac{b^2}{a^2}=\frac 12 \\ \text{or,}~~ \frac {b^2}{a^2}=1-\frac 12=\frac 12 \rightarrow(1) \\ \text{or,}~~  \frac 1a \cdot \frac{2b^2}{a}=1 \\ \text{or,}~~  \frac 1a \cdot 3=1~[*]\\ \text{or,}~~  a=3.

Note[*] : [~ \because ~\text{latus rectum}=\frac{2b^2}{a}=3~]

Again, ~b^2=\frac{a^2}{2}=\frac 92~[~\text{By (1)}]

Hence, the equation of the ellipse is 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{9}+\frac{y^2}{9/2}=1 \\ \therefore~ x^2+2y^2=9.

(v)~ which passes through the points ~(1,3)~ and ~(2,1).

Solution.

The equation of the ellipse can be written as ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\rightarrow(1)

Since the ellipse ~(1)~ passes through the points ~(1,3)~ and ~(2,1),

\frac{1}{a^2}+\frac{9}{b^2}=1 \rightarrow(2),\,\,~ \frac{4}{a^2}+\frac{1}{b^2}=1 \rightarrow(3).

From ~(2)~ and ~(3),~ we get

4\left(\frac{1}{a^2}+\frac{9}{b^2}\right)-\left(\frac{4}{a^2}+\frac{1}{b^2}\right)=4-1 \\ \text{or,}~~ \frac{35}{b^2}=3 \\ \therefore~ b^2=\frac{35}{3}.

Similarly, from ~(2)~ and ~(3),~ we get

9\left(\frac{4}{a^2}+\frac{1}{b^2}\right)-\left(\frac{1}{a^2}+\frac{9}{b^2}\right)=9-1 \\ \text{or,}~~\frac{35}{a^2}=8 \\ \therefore~ a^2=\frac{35}{8}.

Hence, replacing the values of ~a^2~ and ~b^2~, we get from ~(1),

\frac{x^2}{\frac{35}{8}}+\frac{y^2}{\frac{35}{3}}=1 \\ \therefore~ 8x^2+3y^2=35\rightarrow(4)

Finally, from ~(4)~ we get the required equation of ellipse whose major axis is along ~x- axis and minor axis is along ~y-axis.

(vi)~ whose eccentricity is ~\sqrt{\frac 25}~ and passes through the point ~(-3,1).

Solution.

By question,

~e=\sqrt{\frac 25} \Rightarrow e^2=\frac 25 \\~~~~~~ \therefore1-\frac{b^2}{a^2}=\frac 25 \\~~~~~~ \text{or,}~~ \frac {b^2}{a^2}=1-\frac 25=\frac 35 \\~~~~~~ \text{or,}~~ \frac{1}{a^2}=\frac{3}{5b^2}\rightarrow(1)

Since the ellipse ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\rightarrow(2)~ passes through the point ~(-3,1),~ so 

~\frac{(-3)^2}{a^2}+\frac{1^2}{b^2}=1 \\~~~~~~ \text{or,}~~ \frac{9}{a^2}+\frac{1}{b^2}=1  \\~~~~~~ \text{or,}~~ 9 \times \frac{3}{5b^2}+\frac{1}{b^2}=1 ~~[~\text{By (1)}] \\ ~~~~~~\text{or,}~~ \frac{27+5}{5b^2}=1  \\~~~~~~ \text{or,}~~ \frac{32}{5b^2}=1 \\~~~~~~ \therefore~ \frac{1}{b^2}=\frac{5}{32}\rightarrow(3)

Hence, using ~(1),(2)~ and ~(3)~ we get the required equation of ellipse which is 

\frac{3x^2}{32}+\frac{5y^2}{32}=1 \Rightarrow 3x^2+5y^2=32.

(vii)~ whose co-ordinates of vertices are ~(\pm 4,0)~ and the co-ordinates of the ends of minor axes are ~(0,\pm 2).

Solution.

By question, the co-ordinates of the vertices ~(\pm a,0)=(\pm 4,0),~ the co-ordinates of the end of minor axes ~(0,\pm b)=(0,\pm 2).

\therefore~ \pm a=\pm 4 \Rightarrow a^2=4^2=16,~ \pm b=\pm 2 \Rightarrow b^2=2^2=4.

Hence, the equation of the ellipse is 

~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{16}+\frac{y^2}{4}=1 \\ \therefore~ x^2+4y^2=16.

(viii)~ whose distance between the foci is ~2~ and the distance between the directrices is ~4.

Solution.

By question, the distance between the foci is ~2ae=2\rightarrow(1)~ and the  distance between the directrices is ~\frac{2a}{e}=4 \rightarrow(2).

From ~(1)~ and ~(2)~ we get,

~2ae \times \frac{2a}{e}=2 \times 4 \\ \text{or,}~~ a^2=\frac 84=2

Again, from ~(1)~ we get, 

~4a^2e^2=4 \\ \text{or,}~~ a^2e^2=1 \\ \text{or,}~~ 2\left(1-\frac{b^2}{a^2}\right)=1 \\ \text{or,}~~ 1-\frac{b^2}{a^2}=\frac 12 \\ \text{or,}~~ \frac{b^2}{a^2}=1-\frac 12 \\ \text{or,}~~ \frac{b^2}{2}=\frac 12 \\ \text{or,}~~ b^2=1.

So, the equation of the ellipse is given by 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{2}+\frac{y^2}{1}=1 \\ \text{or,}~~ x^2+2y^2=2.

(ix)~ whose eccentricity is ~\frac{1}{\sqrt{2}}~ and the sum of squares of major and minor axes is ~24.

Solution.

By question, 

~(2a)^2+(2b)^2=24 \\ \text{or,}~~ 4(a^2+b^2)=24 \\ \text{or,}~~  a^2+b^2=\frac{24}{4}=6\rightarrow(1)

~e=\frac{1}{\sqrt{2}} \\ \text{or,}~~ e^2=\frac 12 \\ \text{or,}~~  1-\frac{b^2}{a^2}=\frac 12 \\ \text{or,}~~  \frac{b^2}{a^2}=1-\frac 12 \\ \text{or,}~~  b^2=\frac{a^2}{2}\rightarrow(2)

From ~(1)~ and ~(2)~ we get,

~a^2+\frac{a^2}{2}=6 \\ \text{or,}~~  \frac{3a^2}{2}=6 \\ \text{or,}~~  a^2=4 \\~~\therefore b^2=\frac 42=2.

Hence, the equation of the ellipse is given by 

~\frac{x^2}{4}+\frac{y^2}{2}=1 \\ \text{or,}~~  x^2+2y^2=4.

(x)~ whose co-ordinates  of vertices are ~(\pm 5,0)~ and the co-ordinates of one focus are ~(4,0).

Solution.

By question, the equation of the ellipse can be taken in the form ~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\rightarrow(1)

The co-ordinates of the vertices ~(\pm a,0)=(\pm 5,0)~ i.e. ~a=5.

The co-ordinates of one focus ~(ae,0)=(4,0).

\therefore~ ae=4 \\ \text{or,}~~ 5e=4 \\ \text{or,}~~ e=\frac 45 \\ \text{or,}~~ e^2=\left(\frac 45\right)^2 \\ \text{or,}~~ 1-\frac{b^2}{a^2}=\frac{16}{25} \\ \text{or,}~~ \frac{b^2}{a^2}=1-\frac{16}{25} \\ \text{or,}~~ \frac{b^2}{5^2}=\frac{25-16}{25} \\ \text{or,}~~ \frac{b^2}{25}=\frac{9}{25} \\ \text{or,}~~ b^2=9.

Hence, by ~(1)~ we get the required equation of ellipse 

~\frac{x^2}{25}+\frac{y^2}{9}=1 \\ \text{or,}~~ 9x^2+25y^2=225.

(xi)~ whose length of latus rectum is ~\frac{18}{5}~ unit and the co-ordinates of one focus are ~(4,0).

Solution.

The length of latus rectum

~\frac{2b^2}{a}=\frac{18}{5} \\ \text{or,}~~ b^2=\frac 95a\rightarrow(1)

Co-ordinates of one focus ~(ae,0)=(4,0).

\therefore~ ae=4 \\ \text{or,}~~  a^2e^2=4^2 \\ \text{or,}~~ a^2\left(1-\frac{b^2}{a^2}\right)=16\\ \text{or,}~~ a^2-b^2=16 \\ \text{or,}~~a^2-\frac 95a=16 \\ \text{or,}~~ 5a^2-9a-80=0 \\ \text{or,}~~ 5a^2-25a+16a-80=0 \\ \text{or,}~~ 5a(a-5)+16(a-5)=0 \\ \text{or,}~~ (5a+16)(a-5)=0 \\ \therefore a=5~~ [\because~ 5a+16 \neq 0]

So, ~b^2=\frac 95a=\frac 95 \times 5=9.

Hence, the equation of the ellipse is 

~\frac{x^2}{25}+\frac{b^2}{9}=1 \\ \text{or,}~~ 9x^2+25y^2=225.

(xii) whose distance between the foci is ~4\sqrt{3}~ unit and minor axis is of length 4 unit.

Solution.

The length of the minor axis \,\,\, \rightarrow 2b=4 \Rightarrow b=2\rightarrow(1)

Distance between the foci \,\,\, \rightarrow 2ae=4\sqrt{3}

\therefore~ (2ae)^2=(4\sqrt{3})^2 \\ \text{or,}~~ 4a^2e^2=16 \times 3 \\ \text{or,}~~ 4a^2\left(1-\frac{b^2}{a^2}\right)=48 \\ \text{or,}~~a^2-b^2=\frac{48}{4} \\ \text{or,}~~ a^2-2^2=12 \\ \text{or,}~~ a^2=12+4 =16.

Hence, the equation of the ellipse is

~\frac{x^2}{16}+\frac{y^2}{4}=1 \\ \text{or,}~~ x^2+4y^2=16.

(xiii)~ whose eccentricity is ~\sqrt{\frac 23}~ and the length of semi-latus rectum is ~2~ unit.

Solution.

Eccentricity (e)=\sqrt{\frac 23} \Rightarrow e^2=\frac 23

\text{So,}~1-\frac{b^2}{a^2}=\frac 23 \\ \text{or,}~~ \frac{b^2}{a^2}=1-\frac 23=\frac 13\rightarrow(1)

The length of semi-latus rectum 

\frac 12 \times \frac{2b^2}{a}=2 \\ \text{or,}~~ \frac{b^2}{a}=2 \\ \text{or,}~~ b^2=2a \rightarrow(2)

From ~(1)~ and ~(2)~ we get,

~\frac{2a}{a^2}=\frac 13 \\ \text{or,}~~ \frac 2a=\frac 13 \\ \text{or,}~~ a=6.

So, ~ b^2=2a=2 \times 6=12.

Hence, the equation of the ellipse is 

~\frac{x^2}{36}+\frac{y^2}{12}=1 \\ \text{or,}~~ x^2+3y^2=36.

Leave a Comment