Ellipse (S.N.Dey) | Part-3 | Ex-5

In the previous article , we solved few solutions of Short Answer Type Questions of Ellipse Chapter of  S.N.Dey mathematics, Class 11. In this chapter, we will solve few more.
Ellipse-Short-answer-type-questions

4(i) Find the lengths of axes  of the ellipse whose eccentricity is ~\frac 35~ and the distance between focus and directrix is ~16.

Solution.

The distance between focus and directrix =\frac ae-ae

By question,

\frac ae-ae=16 \\ \text{or,}~~ a\left(\frac 1e-e\right)=16  \\ \text{or,}~~ a\left(\frac 53-\frac 35\right)=16 \\ \text{or,}~~  a\times  \frac{25-9}{15}=16 \\ \text{or,}~~  a \times \frac{16}{15}=16  \\ \text{or,}~~a=15.

  ~ e=\frac 35 \Rightarrow e^2=\left(\frac 35\right)^2 \\ \text{or,}~~ 1-\frac{b^2}{a^2}=\frac{9}{25} \\ \text{or,}~~  \frac{b^2}{a^2}=1-\frac{9}{25} \\ \text{or,}~~  \frac{b^2}{a^2}=\frac{16}{25} \\ \text{or,}~~  b=\frac 45 \times a \\ \therefore~ b=\frac 45 \times 15=12.

Hence, the length of the major axis (2a)=2 \times 15=30~\text{unit}~ and the length of the minor axis (2b)=2 \times 12=24~\text{unit}.

(ii)~~(1,3)~ and ~(4,-1)~ are two foci of an ellipse whose eccentricity is ~\frac 14.~ Find the length of the major axis.

Solution.

Eccentricity (e)=\frac 14.

The distance between the two given foci is

2ae=\sqrt{(4-1)^2+(-1-3)^2} \\ \text{or,}~~ 2 \cdot a \cdot \frac 14=\sqrt{9+16}=5 \\ \therefore~ 2a=20.

Hence, the length of the major axis ~(2a)=20~~\text{unit}.

5. The length of the latus rectum of an ellipse is ~8~ unit and that of the major axis, which lies along the ~x- axis , is ~18~ unit. Find its equation in the standard form . Determine the co-ordinates of the foci and the equations of its directrices.

Solution.

The length of the latus rectum of the ellipse is given by 

\frac{2b^2}{a}=8 \\ \text{or,}~~ b^2=4a=4 \times 9 ~~[\because ~2a=18] \\ \therefore~ b^2=36.

Again, the length of the major axis (2a) is given by

2a=18 \\ \Rightarrow a=\frac{18}{2}=9.

Hence,the equation of the ellipse is 

\frac{x^2}{81}+\frac{y^2}{36}=1 \\ \text{or,}~~ 4x^2+9y^2=324.

The eccentricity (e) of the ellipse is given by 

e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{36}{81}}=\sqrt{\frac{45}{81}} \\ \therefore ~e=\sqrt{\frac 59}=\frac{\sqrt{5}}{3}.

The co-ordinates of the foci of the ellipse is given by 

(\pm ae,0)=\left(\pm 9 \times \frac{\sqrt{5}}{3},0\right)=(\pm 3\sqrt{5},0).

The equation of the directrix is given by 

x=\pm \frac ae=\pm \frac{3}{\sqrt{5}} \times 9 \\ \therefore~ \sqrt{5}x=\pm 27.

6. Taking major and minor axes along ~y~ and ~x~ axes, find the equation of the ellipse whose 

(i)~ co-ordinates of foci are ~(0, \pm 1)~ and the length of minor axis is ~2.

Solution.

Since the foci of the given ellipse lie on the ~y-axis , the major axis of the ellipse lies on the ~y-axis.

Again, the centre of the ellipse is given by ~\left(\frac{0+0}{2},\frac{1-1}{2}\right)~i.e.~(0,0).

So, the ellipse is of the form ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1~(a^2>b^2)\rightarrow(1)

So, the co-ordinates of the foci ~(0,\pm ae)=(0,\pm 1).

The length of the minor axis is given by 

2b=2 \Rightarrow b=1.

\text{Now,}~ae=1 \Rightarrow a^2e^2=1 \\ \text{or,}~~ a^2\left(1-\frac{b^2}{a^2}\right)=1 \\ \text{or,}~~ a^2-b^2=1 \\ \text{or,}~~ a^2-1^2=1 \\ \text{or,}~~ a^2=1+1=2.

Hence, using ~(1)~, the equation of the ellipse is 

\frac{x^2}{1}+\frac{y^2}{2}=1 \\ \text{or,}~~ 2x^2+y^2=2.

(ii)~ eccentricity ~\sqrt{\frac 37}~ and the length of latus rectum ~\frac{8}{\sqrt{7}}.

Solution.

e=\sqrt{\frac 37} \\ \text{or,}~~ e^2=\frac 37 \\ \text{or,}~~ 1-\frac{b^2}{a^2}=\frac 37 \\ \text{or,}~~ \frac{b^2}{a^2}=1-\frac 37 =\frac 47\rightarrow(1)

Length of latus rectum 

\frac{2b^2}{a}=\frac{8}{\sqrt{7}} \\ \text{or,}~~ b^2=\frac{4}{\sqrt{7}} \cdot a \rightarrow(2)

From ~(1)~ and ~(2)~ we get,

~\frac 47=\frac{1}{a^2} \times \frac{4a}{\sqrt{7}} \\ \text{or,}~~ a=\sqrt{7} \\ \text{or,}~~ a^2=7.

So, the equation of the ellipse is 

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1 \\ \text{or,}~~ \frac{x^2}{4}+\frac{y^2}{7}=1 \\ \text{or,}~~ 7x^2+4y^2=28.

(iii)~ length of minor axis is ~2~ and the distance between the foci is ~\sqrt{5}.

Solution.

By the condition, length of minor axis (2b) is given by 

2b=2 \Rightarrow b=1.

The distance between the foci is 

2ae=\sqrt{5} \\ \text{or,}~~ (2ae)^2=(\sqrt{5})^2 \\ \text{or,}~~ 4a^2e^2=5 \\ \text{or,}~~ 4a^2\left(1-\frac{b^2}{a^2}\right)=5 \\ \text{or,}~~ 4a^2-4b^2=5 \\ \text{or,}~~ 4a^2-4 \times 1^2=5 \\ \text{or,}~~ 4a^2=5+4 \\ \text{or,}~~ a^2=\frac 94.

Hence, the equation of the ellipse is given by 

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1 \\ \text{or,}~~ \frac{x^2}{1^2}+\frac{y^2}{\frac 94}=1 \\ \text{or,}~~ x^2+\frac 49 \cdot y^2=1 \\ \text{or,}~~ 9x^2+4y^2=9.

(iv)~ co-ordinates of one vertex are ~(0,-6)~ and the co-ordinates of one end of minor axis are ~(-3,0).

Solution.

By question, the equation of the ellipse can be taken as ~\frac{x^2}{b^2}+\frac{y^2}{a^2}=1\rightarrow(1)

Co-ordinates of one vertex is ~(0,-6)~ and co-ordinates of one end of minor axis is ~(-3,0).

\therefore~ a=6,~b=3.

Hence, by ~(1)~ we get,

~\frac{x^2}{3^2}+\frac{y^2}{6^2}=1 \\ \text{or,}~~ \frac{x^2}{9}+\frac{y^2}{36}=1 \\ \text{or,}~~ 4x^2+y^2=36.

(v)~ co-ordinates of foci are ~(0, \pm 8)~ and the eccentricity is ~\frac 45.

Solution.

By question, the co-ordinates of foci (0,\pm ae)=(0,\pm 8).

\therefore~ ae=8\rightarrow(1) \\ \text{or,}~~ a \cdot \frac 45=8 \\ \text{or,}~~ a=10

 ~a^2e^2=8^2~~[\text{By (1)}] \\ \text{or,}~~ a^2\left(1-\frac{b^2}{a^2}\right)=64\\ \text{or,}~~ a^2-b^2=64 \\ \text{or,}~~ 10^2-b^2=64 \\ \text{or,}~~ b^2=100-64=36

Hence, the equation of the ellipse is 

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1 \\ \text{or,}~~ \frac{x^2}{36}+\frac{y^2}{100}=1 \\ \text{or,}~~ \frac{25x^2+9y^2}{900}=1 \\ \text{or,}~~ 25x^2+9y^2=900. 

7.~ Find the equation of the ellipse whose

(i)~ eccentricity is ~\frac 12,~ focus is ~(2,0)~ and directrix is ~x-8=0.

Solution.

Let ~P(x,y)~ be any point on the ellipse . The co-ordinates of the focus : ~S(2,0)~ and the equation of the directrix is given by ~x-8=0\rightarrow(1)

Now, the length of the perpendicular from P on the straight line (1) is given by 

PM=\frac{|x-8|}{\sqrt{1}}=|x-8|~

SP=\sqrt{(x-2)^2+(y-0)^2}=\sqrt{(x-2)^2+y^2}

Now, for the ellipse, we have 

\frac{SP}{PM}=e=\frac 12 \text{(given)} \\ \text{or,}~~ SP^2=\left(\frac 12\right)^2PM^2 \\ \text{or,}~~ (x-2)^2+y^2=\frac 14(x-8)^2 \\ \text{or,}~~ 4(x^2-4x+4+y^2)=x^2-16x+64 \\ \text{or,}~~ 4x^2-16x+16+4y^2=x^2-16x+64 \\ \text{or,}~~ 3x^2+4y^2=48.

Hence, the equation of the ellipse is given by ~3x^2+4y^2=48.

(ii)~ eccentricity is ~\frac{\sqrt{7}}{4},~ focus is ~(0,-\sqrt{7})~ and directrix is ~\sqrt{7}y+16=0.

Solution.

Let ~P(x,y)~ be any point on the ellipse. The co-ordinates of the focus : ~S(0,-\sqrt{7}).

The equation of the directrix is ~ \sqrt{7}y+16=0\rightarrow(1) 

The length of the perpendicular from P on the straight line (1) is

PM=\frac{|\sqrt{7}y+16|}{\sqrt{7}}~

SP=\sqrt{(x-0)^2+(y+\sqrt{7})^2}=\sqrt{x^2+(y+\sqrt{7})^2}

Now, for the ellipse 

\frac{SP}{PM}=e=\frac{\sqrt{7}}{4}~\text{(given)} \\ \text{or,}~~ \frac{SP^2}{PM^2}=\frac{7}{16} \\ \text{or,}~~ 16 SP^2=7PM^2 \\ \text{or,}~~ 16[x^2+(y+\sqrt{7})^2]=7 \times \frac{(\sqrt{7}y+16)^2}{7} \\ \text{or,}~~ 16x^2+16(y^2+2\sqrt{7}y+7)=7y^2+2\sqrt{7}y \times 16 +16^2 \\ \text{or,}~~ 16x^2+16y^2+32\sqrt{7}y+112=7y^2+32\sqrt{7}y+256 \\ \text{or,}~~ 16x^2+9y^2=144.

Hence, the equation of the ellipse is ~16x^2+9y^2=144.

(iii)~ eccentricity is ~\frac 12,~ focus is ~(-1,1)~, directrix is ~x-y+3=0.

Solution.

Let ~P(x,y)~ be any point on the ellipse. The co-ordinates of focus : ~S(-1,1).  The equation of the directrix : ~x-y+3=0\rightarrow(1)

The perpendicular distance of the point P from the straight line (1) is

PM=\frac{|x-y+3|}{\sqrt{1^2+(-1)^2}}=\frac{|x-y+3|}{\sqrt{2}},

SP=\sqrt{(x+1)^2+(y-1)^2}

Now, for the ellipse, we know that

\frac{SP}{PM}=e=\frac 12~~\text{(Given)} \\ \text{or,}~~ SP^2=\left(\frac 12\right)^2 PM^2 \\ \text{or,}~~ 4[(x+1)^2+(y-1)^2]=\frac 12(x-y+3)^2 \\ \text{or,}~~ 8(x^2+2x+1)+8(y^2-2y+1)=(x-y)^2+2(x-y) \cdot 3+3^2 \\ \text{or,}~~ 8x^2+16x+8+8y^2-16y+8=x^2+y^2-2xy+6x-6y+9 \\ \text{or,}~~ 7x^2+7y^2+2xy+10x-10y+7=0.

(iv)~ focus is ~(3,4)~, directrix is ~3x+4y=5~ and eccentricity is ~\frac 23.

Solution.

Let ~P(x,y)~ be any point on the ellipse. The co-ordinates of focus : ~S(3,4).  The equation of the directrix : ~3x+4y=5\rightarrow(1)

The perpendicular distance of the point P from the straight line (1) is

PM=\frac{|3x+4y-5|}{\sqrt{9+16}}=\frac{|3x+4y-5|}{5},~~SP=\sqrt{(x-3)^2+(y-4)^2} 

Now, for the ellipse, we know that

\frac{SP}{PM}=e=\frac 23~~[\text{given}] \\ \text{or,}~~ SP^2=\frac 49 PM^2 \\ \text{or,}~~9[(x-3)^2+(y-4)^2]=\frac{4(3x+4y-5)^2}{25} \\ \text{or,}~~ 225(x^2-6x+9+y^2-8y+16)=4(9x^2+16y^2+25+24xy-40y-30x) \\ \text{or,}~~ 189x^2-96xy+161y^2-1230x-1640y+5525=0\rightarrow(2)

Hence, the equation (2) represents the required ellipse.

Leave a Comment