Hyperbola (S.N.Dey) |Part-2 | Ex-6

In the previous article , we have solved few VSA type questions of Hyperbola chapter of S.N.Dey mathematics, Class 11. In this article , we will solve few more questions of Hyperbola related problems.
Hyperbola-VSA type Questions
Hyperbola-VSA Type Questions’ Solution

9(i) If the length of latus rectum of a rectangular hyperbola is ~6~ unit, find its equation.

Solution.

The length of the latus rectum is ~\frac{2b^2}{a}=6 \rightarrow(1).

For rectangular hyperbola, ~a=b.

So, from (1) we get,

\frac{2a^2}{a}=6 \Rightarrow a=3.

Hence, the equation of the rectangular hyperbola is given by

x^2-y^2=a^2 \Rightarrow x^2-y^2=3^2=9.

(ii) Find the co-ordinates of the foci of the rectangular hyperbola ~x^2-y^2=9.

Solution.

Comparing the given hyperbola ~x^2-y^2=3^2~ with ~x^2-y^2=a^2~ we get, ~a=3.~ Also, we know that the eccentricity (e) of any rectangular hyperbola  is ~\sqrt{2}.

The co-ordinates of the foci is given by 

(\pm ae,0)=(\pm 3 \sqrt{2},0).

10. If the latus rectum and the transverse axis of a hyperbola are equal, show that it is a rectangular hyperbola.

Solution.

We know that the length of latus rectum of the hyperbola  ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\rightarrow(1)~ is ~\frac{2b^2}{a}~ unit and the transverse axis is given by ~2a~ unit.

By question,

\frac{2b^2}{a}=2a \Rightarrow b^2=a^2.

Hence, by (1) we get,

\frac{x^2}{a^2}-\frac{y^2}{a^2}=1 \Rightarrow x^2-y^2=a^2.

So, the given hyperbola is a rectangular hyperbola.

11. Find the positions of the points with respect to the hyperbola ~2x^2-y^2=7.

(i)~~(3,-2)~~(ii)~(4,5)~~(iii)~(-2,3)

Solution(i)

We know that the point ~(x_1,y_1)~ lies outside, on or inside the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ according as 

~\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1<, = ~~\text{or,}~~>0 \rightarrow(1).

The given equation of the hyperbola can be written as 

~\frac{x^2}{7/2}-\frac{y^2}{7}=1.

Now, for the point ~(3,-2)~ we get,

\frac{3^2}{7/2}-\frac{(-2)^2}{7}-1=\frac{18}{7}-\frac 47-1=\frac{18-4-7}{7}=1>0\rightarrow(2)

Hence, by (1) and (2) we can conclude that the point (3,-2) lies inside the given hyperbola.

Solution(ii)

We know that the point ~(x_1,y_1)~ lies outside, on or inside the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ according as 

~\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1<, = ~~\text{or,}~~>0 \rightarrow(1).

The given equation of the hyperbola can be written as 

~\frac{x^2}{7/2}-\frac{y^2}{7}=1.

Now, for the point ~(4,5)~ we get,

\frac{4^2}{7/2}-\frac{5^2}{7}-1=\frac{32}{7}-\frac {25}{7}-1=\frac{32-25}{7}-1=1-1=0\rightarrow(2)

Hence, by (1) and (2) we can conclude that the point (4,5) lies inside the given hyperbola.

Solution(iii)

We know that the point ~(x_1,y_1)~ lies outside, on or inside the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ according as 

~\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1<, = ~~\text{or,}~~>0 \rightarrow(1).

The given equation of the hyperbola can be written as 

~\frac{x^2}{7/2}-\frac{y^2}{7}=1.

Now, for the point ~(-2,3)~ we get,

\frac{(-2)^2}{7/2}-\frac{3^2}{7}-1=\frac{8}{7}-\frac {9}{7}-1=\frac{8-9}{7}-1=-\frac 87<0\rightarrow(2)

Hence, by (1) and (2) we can conclude that the point (-2,3) lies outside the given hyperbola.

12. Find the position of the point ~(7,2)~ with respect to the hyperbola ~9x^2-16y^2=144.

Solution.

We know that the point ~(x_1,y_1)~ lies outside, on or inside the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ according as 

~\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1<, = ~~\text{or,}~~>0 \rightarrow(1).

The given equation of the hyperbola can be written as 

~\frac{x^2}{16}-\frac{y^2}{9}=1.

Now, for the point ~(7,2)~ we get,

\frac{7^2}{16}-\frac{2^2}{9}-1=\frac{49}{16}-\frac 49-1=\frac{233}{144}>0\rightarrow(2)

Hence, by (1) and (2) we can conclude that the point (7,2) lies inside the given hyperbola.

13. Show that the locus of the point of intersection of the lines ~\frac xa-\frac yb=m~ and ~m\left(\frac xa+\frac yb\right)=1,~m being a variable parameter, is a hyperbola.

Solution.

The given equations of straight lines are

~\frac xa-\frac yb=m\rightarrow(1),~m\left(\frac xa+\frac yb\right)=1\rightarrow(2)

From (1)~ and ~(2)~ we get,

~\frac xa-\frac yb=m \\ \text{or,}~~\left(\frac xa+\frac yb\right)\left(\frac xa-\frac yb\right)=m\left(\frac xa+\frac yb\right) \\ \text{or,}~~ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\rightarrow(3)

Hence, by (3) we can conclude that the locus of point of intersection of the given lines is a hyperbola.

14. Find the parametric co-ordinates of the point ~\left(\frac{1}{\sqrt{3}},\frac 12\right)~ on the hyperbola ~12x^2-4y^2=3.

Solution.

The equation of the hyperbola can be written as 

\frac{12x^2}{3}-\frac{4y^2}{3}=1 \\ \text{or,}~~ 4x^2-\frac{4y^2}{3}=1 \\ \text{or,}~~\frac{x^2}{(1/2)^2}-\frac{y^2}{(\sqrt{3}/2)^2}=1 \rightarrow(1)

Comparing (1) with ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ we get, 

~a=\frac 12,~~b=\frac{\sqrt{3}}{2}.

So, we can say that the any point on the hyperbola (1) can be written in parametric form as ~(a\sec\theta,b\tan\theta) \equiv\left(\frac 12 \sec\theta,\frac{\sqrt{3}}{2}\tan\theta\right).

\therefore~ By question,

\frac 12 \sec\theta=\frac{1}{\sqrt{3}} \\ \text{or,}~~ 2\cos\theta=\sqrt{3} \\ \text{or,}~~ \cos\theta=\frac{\sqrt{3}}{2}=\cos 30^{\circ} \\ \therefore~ \theta=30^{\circ}.

Hence, the parametric co-ordinates of the given point can be written as 

~\left(\frac 12 \sec 30^{\circ},\frac{\sqrt{3}}{2}\tan 30^{\circ}\right).

Leave a Comment