Hyperbola (S.N.Dey) |Part-3 | Ex-6

In the previous article , we have solved few VSA type questions of Hyperbola chapter of S.N.Dey mathematics, Class 11. In this article , we will solve few Short Answer Type questions of Hyperbola related problems of s n dey mathematics class 11.
Hyperbola Solutions -S N Dey
Hyperbola- S N Dey Solutions

1. Find (i) the length of axes (ii) length of latus rectum (iii) co-ordinates  of vertices (iv) eccentricity (v) co-ordinates of foci and (vi) equations of the directrices of each of the following hyperbolas :

(a)~ 4x^2-9y^2=36~~(b)~ 9y^2-25x^2=225.

Solution (a)

~4x^2-9y^2=72 \\ \text{or,}~~ \frac{x^2}{18}-\frac{y^2}{8}=1\\ \text{or,}~~\frac{x^2}{(3\sqrt{2})^2}-\frac{y^2}{(2\sqrt{2})^2}=1 \rightarrow(1)

Comparing (1) with the general equation of hyperbola ~\frac{y^2}{a^2}-\frac{x^2}{b^2}=1~ we get,  \therefore~ a=3\sqrt{2},~~b=2\sqrt{2}.

(i) The length of the transverse axis ~(2a)=2 \times 3\sqrt{2}=6\sqrt{2}~~\text{unit}~ and the length of the conjugate axis ~(2b)=2 \times 2\sqrt{2}=4\sqrt{2}~~\text{unit.}

(ii) The length of latus rectum 

~\frac{2b^2}{a}=\frac{2 \times (2\sqrt{2})^2}{3\sqrt{2}}=\frac{16}{3\sqrt{2}}=\frac{8\sqrt{2}}{3}~~\text{unit}

(iii) The co-ordinates of vertices: (\pm a,0)=(\pm 3\sqrt{2},0).

(iv) Eccentricity (e)=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{8}{18}}=\sqrt{\frac{26}{18}}=\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{3}.

(v) The co-ordinates of the foci :

(\pm ae,0)=\left(\pm 3\sqrt{2} \times \frac{\sqrt{13}}{3},0\right)=(\pm \sqrt{26},0). 

(vi) Equations of directrices are 

x=\pm \frac ae=\pm \frac{3\sqrt{2}}{\frac{\sqrt{13}}{3}} \\ \therefore~\sqrt{13}x= \pm 9\sqrt{2}.

Solution(b)

~9y^2-25x^2=225 \\ \text{or,}~~\frac{y^2}{25}-\frac{x^2}{9}=1\rightarrow(1)

Comparing (1) with the general equation of hyperbola ~\frac{y^2}{a^2}-\frac{x^2}{b^2}=1~ we get, ~~a^2=25 \Rightarrow a=5,~b^2=9\Rightarrow b=3.

(i) The length of the transverse axis ~(2a)=2 \times 5=10~~\text{unit}~ and the length of the conjugate axis ~(2b)=2 \times 3=6~~\text{unit.}

(ii) The length of latus rectum 

~\frac{2b^2}{a}=\frac{2 \times 9}{5}=\frac{18}{5}~~\text{unit}

(iii) The co-ordinates of vertices: (0, \pm a)=(0, \pm 5).

(iv) Eccentricity (e)=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{9}{25}}=\sqrt{\frac{34}{25}}=\frac{\sqrt{34}}{5}.

(v) The co-ordinates of the foci :

(0, \pm ae)=\left(0, \pm 5 \times \frac{\sqrt{34}}{5}\right)=(0, \pm \sqrt{34}). 

(vi) Equations of directrices are 

y=\pm \frac ae=\pm \frac{5}{\sqrt{34}/5}=\pm \frac{25}{\sqrt{34}} \\ \therefore~\sqrt{34}y= \pm 25.

2. Find the length of the transverse and conjugate axes of the hyperbola ~9x^2-16y^2=144. Write down the equation of the hyperbola conjugate to it and find the eccentricities of both the hyperbolas.

Solution.

9x^2-16y^2=144 \\ \text{or,}~~ \frac{x^2}{16}-\frac{y^2}{9}=1\rightarrow(1)

Comparing (1) with the general equation of hyperbola ~\frac{y^2}{a^2}-\frac{x^2}{b^2}=1~ we get,  

a^2=16 \Rightarrow a=4,~~ b^2=9 \Rightarrow b=3.

So, the length of the transverse axis ~(2a)=2 \times 4=8~~\text{unit}~ and the length of the conjugate axis ~(2b)=2 \times 3=6~\text{unit}.

2nd Part :

The equation of the conjugate hyperbola is

~\frac{y^2}{9}-\frac{x^2}{16}=1 \Rightarrow 16y^2-9x^2=144.

3rd Part :

The eccentricity (e_1) of the hyperbola is 

~e_1=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{9}{16}}=\sqrt{\frac{25}{16}}=\frac 54.

The eccentricity (e_2) of the conjugate hyperbola is 

~e_2=\sqrt{1+\frac{16}{9}}=\sqrt{\frac{25}{9}}=\frac 53.

3. Find the equation of the hyperbola, whose axes are axes of co-ordinates and 

(i) length of transverse and conjugate axes are 5 and 6 respectively.

Solution.

Since the transverse axis is along ~x-axis and conjugate axis is along ~y-axis, so the equation of the hyperbola can be written in the form of ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

So, by question,

(i)~~ 2a=5 \Rightarrow a=\frac 52,~~ 2b=6 \Rightarrow b=\frac 62=3.

Hence, the equation of the hyperbola is 

\frac{x^2}{(5/2)^2}-\frac{y^2}{3^2}=1 \\ \text{or,}~~ \frac{4x^2}{25}-\frac{y^2}{9}=1 \\ \text{or,}~~ 36x^2-25y^2=225.

(ii) lengths of conjugate axis and latus rectum are 2 and ~\frac 83~ respectively.

Solution.

By question, the length of conjugate axis ~2b=2 \Rightarrow b=1~~ and the length of latus rectum ~~\frac{2b^2}{a}=\frac 83 \Rightarrow \frac{2\times 1^2}{a}=\frac 83 \Rightarrow a=\frac 34.

Hence, the equation of the hyperbola is 

~\frac{x^2}{(3/4)^2}-\frac{y^2}{1^2}=1 \\ \text{or,}~~ \frac{16x^2}{9}-y^2=1 \\ \text{or,}~~ 16x^2-9y^2=9.

(iii)which passes through the points ~(1,1)~ and ~(2,-3).

Solution.

The hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ passes through the points ~(1,1)~ and ~(2,-3).

\therefore~\frac{1}{a^2}-\frac{1}{b^2}=1 \rightarrow(1),~~\frac{2^2}{a^2}-\frac{(-3)^2}{b^2}=1 \Rightarrow~~ \frac{4}{a^2}-\frac{9}{b^2}=1 \rightarrow(2) 

So, from (1) and (2) we get,

~\left(\frac{4}{a^2}-\frac{9}{b^2}\right)-4\left(\frac{1}{a^2}-\frac{1}{b^2}\right)=1-4 \\ \text{or,}~~-\frac{9}{b^2}+\frac{4}{b^2}=-3 \\ \text{or,}~~ \frac{-9+4}{b^2}=-3 \\ \text{or,}~~ -\frac{5}{b^2}=-3 \\ \text{or,}~~ b^2=\frac 53.

So, by (1) we get,

~\frac{1}{a^2}=1+\frac{1}{b^2}=1+\frac 35 =\frac 85 \\ \therefore~ a^2=\frac 58. 

Hence, the required equation of the hyperbola is 

~\frac{x^2}{\frac 58}-\frac{y^2}{\frac 53}=1 \\ \text{or,}~~ \frac{8x^2}{5}-\frac{3y^2}{5}=1 \\ \text{or,}~~ 8x^2-3y^2=5.


MTG 45 Years JEE Advanced
MTG 45 Years JEE Advanced

MTG 45 Years JEE Advanced Previous Years Solved Papers with Chapterwise Solutions-Physics (1978-2022), JEE Advanced PYQ for 2023 Exam Paperback


(iv) distance between the foci is 10 and length of conjugate axis is 6.

Solution.

The length of conjugate axis ~2b=6\Rightarrow ~b=\frac 62=3\rightarrow(1)

The distance between the foci

2ae=10 \Rightarrow ae=\frac{10}{2}=5 \\ \therefore a^2e^2=5^2=25 \\ \text{or,}~~ a^2\left(1+\frac{b^2}{a^2}\right)=25 \\ \text{or,}~~ a^2+b^2=25 \\ \text{or,}~~ a^2+3^2=25 \\ \text{or,}~~a^2=25-9=16\rightarrow(2)

Hence, by (1) and (2) we get the required equation of hyperbola which is ~~\frac{x^2}{16}-\frac{y^2}{9}=1 \Rightarrow 9x^2-16y^2=144.

(v) co-ordinates of foci are ~\left(\pm \frac 52,0\right)~ and the length of latus rectum is ~\frac 94. 

Solution.

The co-ordinates of foci 

(\pm ae, 0)=\left(\pm \frac 52,0\right) \\ \therefore ae=\frac 52\rightarrow(1)

The length of the latus rectum 

\frac{2b^2}{a}=\frac 94 \Rightarrow b^2=\frac 98a \rightarrow(2)

From (1) we get,

~a^2e^2=\left(\frac 52\right)^2 \\ \text{or,}~~ a^2\left(1+\frac{b^2}{a^2}\right)=\frac{25}{4} \\ \text{or,}~~ a^2+b^2=\frac{25}{4} \\ \text{or,}~~ a^2+\frac 98a=\frac{25}{4}~~[\text{By (2)}] \\ \text{or,}~~ 8a^2+9a=50 \\ \text{or,}~~ 8a^2+9a-50=0 \\ \text{or,}~~ 8a^2+25a-16a-50=0 \\ \text{or,}~~ a(8a+25)-2(8a+25)=0 \\ \text{or,}~~(8a+25)(a-2)=0 \\ \therefore~ a=2~~[~\because a>0] 

\therefore~b^2=\frac 98a=\frac 98 \times 2=\frac 94.

Hence, the equation of the hyperbola is 

~\frac{x^2}{2^2}-\frac{y^2}{\frac 94}=1 \\ \text{or,}~~\frac{x^2}{4}-\frac{4y^2}{9}=1 \\ \text{or,}~~ 9x^2-16y^2=36.

(vi)distances between the foci and directrices are ~4\sqrt{7}~ and ~\frac{16}{\sqrt{7}}~ respectively.

Solution.

The distance between the foci =2ae.

\therefore~2ae=4\sqrt{7}\rightarrow(1)

Again, the distance between two directrices =\frac{2a}{e}.

\Rightarrow~ \frac{2a}{e}=\frac{16}{\sqrt{7}}\rightarrow(2)

So, by ~(1) \times (2)~, we get

~2ae \times \frac{2a}{e}=4\sqrt{7}\times \frac{16}{\sqrt{7}} \\ \text{or,}~~ 4a^2=64 \\ \text{or,}~~a^2=16\rightarrow(3)

Again, by (1) we get,

a^2e^2=(2\sqrt{7})^2 \\ \text{or,}~~ a^2\left(1+\frac{b^2}{a^2}\right)=28 \\ \text{or,}~~a^2+b^2=28 \\ \text{or,}~~ 16+b^2=28 \\ \text{or,}~~ b^2=28-16=12.

So, the equation of the hyperbola is 

~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{16}-\frac{y^2}{12}=1 \\ \text{or,}~~ 3x^2-4y^2=48.

(vii) eccentricity is ~\frac{\sqrt{13}}{3} and the sum of squares of the lengths of axes is 52.

Solution.

By question, we have 

(2a)^2+(2b)^2=52 \\ ~~\text{or,}~~ 4a^2+4b^2=52 \\~~ \text{or,}~~a^2+b^2=\frac{52}{4}=13 \rightarrow(1)

e=\frac{\sqrt{13}}{3}~~\text{(Given)} \\~~ \text{or,}~~e^2=\frac{13}{9} \\ ~~\text{or,}~~1+\frac{b^2}{a^2}=\frac{13}{9} \\~~ \text{or,}~~ \frac{a^2+b^2}{a^2}=\frac{13}{9} \\~~ \text{or,}~~ \frac{13}{a^2}=\frac{13}{9}~~[\text{By (1)}] \\ ~~\text{or,}~~ a^2=9

Putting the value of a^2 in (1) we get,

~9+b^2=13 \Rightarrow b^2=13-9=4.

Hence, the equation of the hyperbola is 

~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\~~ \text{or,}~~ \frac{x^2}{9}-\frac{y^2}{4}=1 \\~~ \therefore~4x^2-9y^2=36.

(viii)transverse axis is 2a and the vertex bisects the line segment joining the centre and focus.

Hyperbola-S N Dey Solution

Solution.

Since the vertex bisects the line segment joining the centre and the focus,

\therefore~ the distance of the vertex from the centre 

=\frac 12 \times (the distance of the focus from the centre)

\therefore~ a=\frac{ae}{2} \Rightarrow e=2 \\ \text{or,}~~ e^2=1+\frac{b^2}{a^2}=4 \\ \text{or,}~~ \frac{b^2}{a^2}=3 \\ \text{or,}~~ b^2=3a^2

Hence, the equation of the hyperbola is 

~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{a^2}-\frac{y^2}{3a^2}=1 \\ \therefore~3x^2-y^2=3a^2.

(ix) which passes through the point (2,1) and whose eccentricity is ~\sqrt{\frac 32}.

Solution.

The hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ passes through the point ~(2,1).

\therefore~\frac{2^2}{a^2}-\frac{1^2}{b^2}=1 \Rightarrow \frac{4}{a^2}-\frac{1}{b^2}=1 \\ \text{or,}~~4-\frac{a^2}{b^2}=a^2 \\ \text{or,}~~ \frac{a^2}{b^2}=4-a^2 \rightarrow(1)

\text{Again,}~e=\sqrt{\frac 32} \Rightarrow e^2=\frac 32 \\ \text{or,}~~ 1+\frac{b^2}{a^2}=\frac 32 \Rightarrow \frac{b^2}{a^2}=\frac 32-1=\frac 12 \rightarrow(2)

By ~(1) \times (2)~ we get,

~ \frac{a^2}{b^2} \times \frac{b^2}{a^2}=\frac 12(4-a^2) \\ \text{or,}~~1=\frac{4-a^2}{2} \\ \text{or,}~~ 2=4-a^2 \\ \therefore~ a^2=4-2=2.

So, using (2) we get, ~ \frac{b^2}{2}=\frac 12 \Rightarrow b^2=1.

Hence, the equation of the hyperbola is given by 

~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{2}-\frac{y^2}{1}=1 \\ \text{or,}~~ x^2-2y^2=2.


17 Year-wise JEE Advanced Previous Year Solved Papers

17 Year-wise JEE Advanced Previous Year Solved Papers 1 & 2 (2006 – 2022) 4th Edition | Answer Key validated with IITJEE JAB | PYQs Question Bank


(x) eccentricity is 3 and the co-ordinates of one focus are \left(\frac 32,0\right).

Solution.

Eccentricity (e) is ~3~ and the co-ordinates of one focus (ae,0) are ~\left(\frac 32,0\right).

\therefore ae=\frac 32 \Rightarrow a \times 3=\frac 32 \Rightarrow a=\frac 12.

e=3 \Rightarrow e^2=3^2 \Rightarrow 1+\frac{b^2}{a^2}=9 \\ \therefore~ \frac{b^2}{a^2}=8 \Rightarrow b^2=8a^2=8 \times \frac 14=2.

\therefore~ The equation of the hyperbola is 

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ \text{or,}~~ \frac{x^2}{1/4}-\frac{y^2}{2}=1\\ \text{or,}~~4x^2-\frac{y^2}{2}=1 \\ \therefore~8x^2-y^2=2.

(xi) eccentricity is \sqrt{\frac 32} and the length of semi latus rectum is 2

Solution.

It is given that the eccentricity (e) is ~3~ and the length of semi-latus rectum ~\left(\frac{b^2}{a}\right) is ~2.

\therefore~ \frac{b^2}{a}=2 \Rightarrow b^2=2a \rightarrow(1)

~e=\sqrt{\frac 32} \Rightarrow e^2=\frac 32 \\ \text{or,}~~ 1+\frac{b^2}{a^2}=\frac 32 \\ \text{or,}~~ \frac{b^2}{a^2}=\frac 32-1 \\ \text{or,}~~  \frac{2a}{a^2}=\frac 12~~[\text{By (1)}] \\ \text{or,}~~  \frac 2a=\frac 12 \\ \text{or,}~~  a=4 \Rightarrow a^2=4^2=16. \\ \therefore b^2=2\times 4=8

Hence, the equation of the hyperbola is 

\frac{x^2}{16}-\frac{y^2}{8}=1 \\ \text{or,}~~  x^2-2y^2=16.

(xii)co-ordinates of foci are ~(5,0),~(-5,0)~ and the eccentricity is ~\frac 54.

Solution.

The co-ordinates of foci ~(\pm ae,0)=(\pm 5,0)~ and the eccentricity (e) is ~\frac 54.

\therefore ae=5 \Rightarrow a^2e^2=5^2 \\ \text{or,}~~a^2\left(1+\frac{b^2}{a^2}\right)=25 \\ \text{or,}~~ a^2+b^2=25 \rightarrow(1)

 \text{Again,}~a^2e^2=25 \Rightarrow a^2 \times (5/4)^2=25 \\ \text{or,}~~ a^2 \times \frac{25}{16}=25 \\ \text{or,}~~ a^2=16\rightarrow(2)

By (1) and (2) we get, 

~ 16+b^2=25 \Rightarrow b^2=25-16=9.

Hence, the equation of the hyperbola is 

~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ \text{or,}~~\frac{x^2}{16}-\frac{y^2}{9}=1 \\ \text{or,}~~  9x^2-16y^2=144.

Leave a Comment