Hyperbola (S.N.Dey) | Part-4 | Ex-6

In the previous article , we have solved few Short Answer type questions of Hyperbola chapter of S.N.Dey mathematics, Class 11. In this article , we will solve few more Short Answer Type questions of Hyperbola related problems of s n dey mathematics class 11.
Hyperbola- S N Dey Mathematics
Hyperbola (S.N.Dey) | Part-4 | Ex-6

4(i) For what value of m the hyperbola 3x^2-my^2=48 will pass through the point ~(8,-6)~? Find its eccentricity and the length of latus rectum.

Solution.

Since the hyperbola ~3x^2-my^2=48~ passes through the point ~(8,-6)~,

3 \times 8^2-m \times (-6)^2=48 \\ \text{or,}~~ 192-36m=48 \\ \text{or,}~~ 36m=192-48 \\ \therefore~ m=\frac{144}{36}=4.

So, the equation of the given hyperbola is 

~3x^2-4y^2=48 \\ \text{or,}~~ \frac{x^2}{16}-\frac{y^2}{12}=1 \rightarrow(1)

Comparing (1) with the general form of hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ we get,

~a^2=16 \Rightarrow a=4,~b^2=12 \Rightarrow b=\sqrt{12}=2\sqrt{3}.

\therefore~ The eccentricity (e) of the hyperbola is 

~e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{12}{16}}=\sqrt{\frac{28}{16}}=\sqrt{\frac 74}=\frac{\sqrt{7}}{2}.

The length of the latus rectum is 

\frac{2b^2}{a}=\frac{2\times 12}{4}=6~~\text{unit}

(ii) The hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~ passes through the point of intersection of the lines ~x+y=3,~2x-3y=1~ and its eccentricity is ~\sqrt{3}; show that its length of latus rectum is ~2\sqrt{14}.

Solution.

x+y-3=0 \rightarrow(1),~2x-3y-1=0 \rightarrow(2)

So, from (1) and (2) we get,

~2(x+y-3)-(2x-3y-1)=0 \\ \text{or,}~~  2y-6+3y+1=0 \\ \text{or,}~~ 5y=6-1 \\ \text{or,}~~ y=\frac 55=1

\therefore~ By (1) we get,

~x+1-3=0 \Rightarrow x=3-1=2

So, the point of intersection of (1) and (2) is ~(2,1).

Since the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~  passes through the point ~(2,1),~

\frac{2^2}{a^2}-\frac{1^2}{b^2}=1 \\ \text{or,}~~ \frac{4}{a^2}-\frac{1}{b^2} \\ \text{or,}~~ 4-\frac{a^2}{b^2}=a^2 \\ \text{or,}~~ \frac{a^2}{b^2}=4-a^2 \rightarrow(1)

~e= \sqrt{3} \Rightarrow e^2=3 \\ \text{or,}~~ 1+\frac{b^2}{a^2}=3 \\ \text{or,}~~ \frac{b^2}{a^2}=3-1=2 \rightarrow(2)

By ~(1) \times (2)~ we get,

~1=2(4-a^2) \\ \text{or,}~~ 1=8-2a^2 \\ \text{or,}~~ 2a^2=8-1 \\ \text{or,}~~ a=\sqrt{\frac 72}

\therefore~ b^2=2a^2=2 \times \frac 72=7

Hence, the length of its latus rectum is 

\frac{2b^2}{a}=\frac{2 \times 7}{\sqrt{\frac 72}}=2 \times 7 \times \sqrt{\frac 27}=2\sqrt{14}. 


Oswaal JEE Advance 10 Mock Test Papers (Paper-1 & Paper-2) Physics, Chemistry, Mathematics (For 2023 Exam) Paperback


(iii) The hyperbola  ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~  passes through the point of intersection of the lines ~7x+13y-87=0~ and ~5x-8y+7=0~ and its latus rectum is ~\frac{32\sqrt{2}}{5}. Find a and b.

Solution.

7x+13y-87=0 \rightarrow(1),~~5x-8y+7=0 \rightarrow(2)

From (1) and (2) we get,

~5(7x+13y-87)-7(5x-8y+7)=0 \\ \text{or,}~~ 65y-435+56y-49=0 \\ \text{or,}~~ 121y=435+49 \\ \text{or,}~~ y=\frac{484}{121}=4

From (1) we get, 

~7x+13 \times 4-87=0 \\ \text{or,}~~ 7x+52-87=0 \\ \text{or,}~~7x=35 \\ \therefore~x=\frac{35}{7}=5

So, the point of intersection of the straight lines (1) and (2) is (5,4).

Since the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~  passes through the point ~(5,4),~ 

~\frac{5^2}{a^2}-\frac{4^2}{b^2}=1 \\ \text{or,}~~ \frac{25}{a^2}-\frac{16}{b^2}=1  \\ \text{or,}~~ 25-\frac{16a^2}{b^2}=a^2 \\ \text{or,}~~ \frac{16a^2}{b^2}=25-a^2\rightarrow(3)

The length of latus rectum ~\frac{2b^2}{a}=\frac{32\sqrt{2}}{5}\rightarrow(4)

By ~(3) \times (4)~ we get,

\frac{16a^2}{b^2} \times \frac{2b^2}{a}=(25-a^2) \times \frac{32\sqrt{2}}{5} \\ \text{or,}~~ 5a=\sqrt{2}(25-a^2) \\ \text{or,}~~ \sqrt{2}a^2+5a-25\sqrt{2}=0 \\ \text{or,}~~a=\frac{-5 \pm \sqrt{5^2-4\sqrt{2}(-25\sqrt{2})}}{2\sqrt{2}}=\frac{-5 \pm \sqrt{25+200}}{2\sqrt{2}} \\ \therefore a=\frac{-5+\sqrt{225}}{2\sqrt{2}}~~( \because~ a>0) \\ \text{or,}~~ a=\frac{-5+15}{2\sqrt{2}}=\frac{10}{2\sqrt{2}}=\frac{5}{\sqrt{2}}=\frac{5\sqrt{2}}{2}

By (2) we get, 

~b^2=\frac{16\sqrt{2}}{5} \times \frac{5\sqrt{2}}{2}=16 \\ \therefore~ b=\sqrt{16}=4

(iv) The hyperbola  ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~  passes through the point ~(-3,2)~ and its eccentricity is ~\sqrt{\frac 53}; find the length of its latus rectum.

Solution.

Since the hyperbola ~\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~  passes through the point ~(-3,2),~

\therefore~\frac{(-3)^2}{a^2}-\frac{2^2}{b^2}=1 \\ \text{or,}~~ \frac{9}{a^2}-\frac{4}{b^2}=1 \\ \text{or,}~~ 9-\frac{4a^2}{b^2}=a^2 \\ \text{or,}~~ \frac{4a^2}{b^2}=9-a^2\rightarrow(1)

e=\sqrt{\frac 53} \Rightarrow e^2=\frac53 \\ \text{or,}~~ 1+\frac{b^2}{a^2}=\frac 53 \\ \text{or,}~~ \frac{b^2}{a^2}=\frac 53-1=\frac 23 \rightarrow(2)

By ~(1) \times (2)~ we get,

~4=\frac 23(9-a^2) \Rightarrow 12=18-2a^2 \\ \text{or,}~~ 2a^2=18-12 \\ \text{or,}~~ a^2=\frac 62=3 \\ \text{or,}~~ a=\sqrt{3}

From (2) we get, ~\frac{b^2}{3}=\frac 23 \Rightarrow b^2=2.

\therefore~ the length of the latus rectum is 

\frac{2b^2}{a}=\frac{2 \times 2}{\sqrt{3}}=\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3}~~\text{unit}

5. Find the equation of the hyperbola whose.

(i) eccentricity is ~\frac 43,~ focus is (0, 4)~ and the directrix is the line ~4y-9=0.

Solution.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(0,4)~ is given by ~SP=\sqrt{x^2+(y-4)^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~4y-9=0~ is

~PM=\frac{|4y-9|}{\sqrt{0^2+4^2}}=\frac{|4y-9|}{4}.

\because~~ e=\frac 43, \\ \therefore~~ \frac{SP}{PM}=\frac 43 \\ \text{or,}~~ \frac{SP^2}{PM^2}=\left(\frac 43\right)^2=\frac{16}{9} \\ \text{or,}~~ 9 SP^2=16 PM^2 \\ \text{or,}~~ 9[x^2+(y-4)^2]=16 \times \frac{(4y-9)^2}{16} \\ \text{or,}~~ 9(x^2+y^2-8y+16)=16y^2-72y+81 \\ \text{or,}~~ 9x^2+9y^2-16y^2=81-144 \\ \text{or,}~~ 9x^2-7y^2=-63 \\ \text{or,}~~ 7y^2-9x^2=63.


Xclusive JEE Advanced 45 Previous Year (1978 - 2022)
Jee-Advanced

Xclusive JEE Advanced 45 Previous Year (1978 – 2022) Mathematics Chapterwise & Topicwise Solved Papers | IIT-JEE PYQ Question Bank in NCERT Flow with 100% Detailed Solutions for JEE 2023 Paperback

Product details


Publisher ‏ : ‎ AIETS.COM PVT. LTD. (1 January 2023)
Language ‏ : ‎ English
Paperback ‏ : ‎ 444 pages
ISBN-10 ‏ : ‎ 8119181220
ISBN-13 ‏ : ‎ 978-8119181223
Item Weight ‏ : ‎ 800 g
Country of Origin ‏ : ‎ India


(ii) eccentricity is \frac 54,~ focus is ~(-5,0)~ and directrix is the line ~5x+16=0.

Solution.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(-5,0)~ is given by  ~SP=\sqrt{(x+5)^2+y^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~5x+16=0~ is 

~PM=\frac{|5x+16|}{\sqrt{5^2+0^2}}=\frac{|5x+16|}{5}.

\because~ e=\frac 54 , \\ \therefore ~\frac{SP}{PM}=\frac 54 \\ \text{or,}~~ \frac{SP^2}{PM^2}=\left(\frac 54\right)^2=\frac{25}{16}  \\ \text{or,}~~16 SP^2=25 PM^2 \\ \text{or,}~~ 16[(x+5)^2+y^2]=25 \times \frac{(5x+16)^2}{25} \\ \text{or,}~~ 16(x^2+10x+25+y^2)=25x^2+160x+256 \\ \text{or,}~~ 16x^2+160x+400+16y^2=25x^2+160x+256 \\ \text{or,}~~16x^2-25x^2+16y^2=256-400  \\ \text{or,}~~ -9x^2+16y^2=-144 \\ \text{or,}~~ 9x^2-16y^2=144 \rightarrow(1)

Hence, the equation ~(1)~ represents the required equation of hyperbola.

(iii)eccentricity is \sqrt{3},~ focus is ~(2,3)~ and the equation of directrix is ~x+2y=1.

Solution.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(2,3)~ is given by  ~SP=\sqrt{(x-2)^2+(y-3)^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~x+2y=1~ is 

~PM=\frac{|x+2y-1|}{\sqrt{1^2+2^2}}=\frac{|x+2y-1|}{\sqrt{5}}.

\because~ e=\sqrt{3} , \\ \therefore ~~~\frac{SP}{PM}=\sqrt{3} \\ \text{or,}~~ \frac{SP^2}{PM^2}=\left(\sqrt{3}\right)^2 \\ \text{or,}~~ SP^2=3 PM^2 \\ \text{or,}~~ (x-2)^2+(y-3)^2=3 \times \frac{(x+2y-1)^2}{5} \\ \text{or,}~~5(x^2-4x+4+y^2-6y+9)\\=3[x^2+4y^2+1+2 \cdot x \cdot 2y+2 \cdot 2y \cdot(-1)+2 \cdot(-1) \cdot x] \\ \text{or,}~~ 5x^2-20x+20+5y^2-30y+45=3x^2+12y^2+3+12xy-12y-6x \\ \text{or,}~~2x^2-7y^2-12xy-14x-18y+62=0 \rightarrow(1)

Hence, the equation ~(1)~ represents the required equation of hyperbola.

(iv)  eccentricity is \sqrt{2},~ focus is ~(3,1)~ and the equation of directrix is ~2x+y-1=0.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(3,1)~ is given by  ~SP=\sqrt{(x-3)^2+(y-1)^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~2x+y-1=0~ is

PM=\frac{|2x+y-1|}{\sqrt{2^2+1^2}}=\frac{|2x+y-1|}{\sqrt{5}} 

\because~ e=\sqrt{2},\\~~\therefore~~ \frac{SP}{PM}=\sqrt{2} \\ \text{or,}~~SP^2=2PM^2 \\ \text{or,}~~(x-3)^2+(y-1)^2= 2 \times \frac{(2x+y-1)^2}{5} \\ \text{or,}~~ 5(x^2-6x+9+y^2-2y+1)=2(4x^2+y^2+1+4xy-2y-4x) \\ \text{or,}~~ 5x^2-30x+45+5y^2-10y+5=8x^2+2y^2+2+8xy-4y-8x \\ \text{or,}~~ -3x^2+3y^2-22x-6y+48-8xy=0 \\ \text{or,}~~ 3x^2-3y^2+8xy+22x+6y-48=0 \rightarrow(1)

Hence, the equation ~(1)~ represents the required equation of hyperbola.

(v)  eccentricity is \sqrt{2},~ focus is ~(a,0)~ and the equation of directrix is ~x=\frac a2.

Solution.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(a,0)~ is given by  ~SP=\sqrt{(x-a)^2+y^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~x=\frac a2~ is 

~PM=\frac{|x-a/2|}{\sqrt{1^2+0^2}}=\left|x-\frac a2\right|

\because~ e=\sqrt{2},\\~\therefore~~~\frac{SP}{PM}=\sqrt{2} \\ \text{or,}~~ SP^2=2PM^2 \\ \text{or,}~~ (x-a)^2+y^2=2(x-a/2)^2 \\ \text{or,}~~ x^2-2ax+a^2+y^2=2(x^2-2x \cdot a/2+a^2/4) \\ \text{or,}~~ x^2-2ax+a^2+y^2=2x^2-2ax+a^2/2 \\ \text{or,}~~ -x^2+y^2=-a^2+a^2/2 \\ \text{or,}~~-(x^2-y^2)=-\frac{a^2}{2}\\ \text{or,}~~x^2-y^2=a^2/2 \\ \therefore~2x^2-2y^2=a^2\rightarrow(1)

Hence, the equation ~(1)~ represents the required equation of hyperbola.

(vi) eccentricity is ~3,~ focus is ~(-1,1)~ and the equation of directrix is ~x-y+3=0.

Solution.

Let ~P(x,y)~ be any point on the hyperbola.

\therefore~ The distance of ~P(x,y)~ from the focus ~S(-1,1)~ is given by  ~SP=\sqrt{(x+1)^2+(y-1)^2}~~\text{unit}

Again, the distance of ~P(x,y)~ from the directrix ~x-y+3=0~ is

PM=\frac{|x-y+3|}{\sqrt{1^2+(-1)^2}}=\frac{|x-y+3|}{\sqrt{2}} 

\because~ e=3,\\~~\therefore~~ \frac{SP}{PM}=3 \\ \text{or,}~~SP^2=9PM^2 \\ \text{or,}~~(x+1)^2+(y-1)^2= 9 \times \frac{(x-y+3)^2}{2} \\ \text{or,}~~ 2(x^2+2x+1+y^2-2y+1)=9(x^2+y^2+9-2xy-6y+6x) \\ \text{or,}~~ 2x^2+4x+4+2y^2-4y=9x^2+9y^2+81-18xy-54y+54x\\ \text{or,}~~ 0=7x^2+7y^2-18xy-54y+4y+54x-4x+81-4\\ \text{or,}~~ 7(x^2+y^2)-18xy-50y+50x+77=0\rightarrow(1)

Hence, the equation ~(1)~ represents the required equation of hyperbola.

Read More :

Leave a Comment