Ellipse (S.N.Dey) |Part-6 |Ex-5

In the previous article , we solved few solutions of Short Answer Type Questions of Ellipse Chapter of S.N.Dey mathematics, Class 11. In this chapter, we will solve few long answer type questions.
S N Dey Mathematics-Ellipse-Solutions

1. Find ~(i)~ the centre, ~(ii)~ vertices, ~(iii)~ equations of the axes, ~(iv)~ lengths of the axes, ~(v)~ eccentricity, ~(vi)~ the length of latus  rectum, ~(vii)~ co-ordinates of foci and ~(viii)~ the equations of the directrices of each of the following ellipses :

(a)~\frac{(x+1)^2}{9}+\frac{(y-2)^2}{5}=1~(b)~ 3x^2+4y^2+6x-8y=5~(c)~9x^2+5y^2-30y=0.

Solution (a).

We have the given equation of ellipse ~\frac{(x+1)^2}{9}+\frac{(y-2)^2}{5}=1\rightarrow(1)

Comparing ~(1)~ with the general equation of ellipse ~\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1~ we get,

~a^2=9 \Rightarrow a =3,~~b^2=5 \Rightarrow b =\sqrt{5},~~ \alpha=-1,~ \beta=2.

So, the major axis of the ellipse is parallel to the ~x- axis and minor axis is parallel to ~y-axis.

(i) Centre ~(-1,2)~

(ii) Vertex ~(\alpha \pm a,\beta)=(-1 \pm 3,2)~ i.e. ~(2,2)~ and ~(-4,2).

(iii) Major axis is given by ~y=2 \Rightarrow y-2=0~ and minor axis is given by ~x=-1 \Rightarrow x+1=0.

(iv) Length of major axis =2a=2 \times 3=6~ unit and length of minor axis =2b=2\sqrt{5}~ unit.

(v) Eccentricity (e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 59}=\frac 23.

(vi) Length of latus rectum ~\left(\frac{2b^2}{a}\right)=\frac{2 \times 5}{3}=\frac{10}{3}~ unit.

(vii) The co-ordinates of foci are given by 

(\alpha \pm ae, \beta)=(-1 \pm 3 \times \frac 23, 2)=(-1 \pm 2,2)

i.e. ~(1,2)~ and ~(-3,2).

(viii) The equation of the directrix is 

x=\alpha \pm \frac ae=-1 \pm \frac{3}{2/3}=-1 \pm \frac 92 \\ \text{or,}~~ 2x=-2 \pm 9 \Rightarrow 2x=-2+9,~~ 2x=-2-9 \\ \text{or,}~~ 2x=7,~~2x+11=0. 

Solution (b).

We have the given equation of ellipse ~\frac{(x+1)^2}{9}+\frac{(y-2)^2}{5}=1\rightarrow(1)

Comparing ~(1)~ with the general equation of ellipse ~\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1~ we get,

~a^2=4 \Rightarrow a =2,~~b^2=3 \Rightarrow b =\sqrt{3}, \alpha=-1,~ \beta=2.

Since ~a^2>b^2, the major axis of the ellipse is parallel to the ~x- axis and minor axis is parallel to ~y-axis.

(i) Centre ~(\alpha,\beta)=(-1,1)~

(ii) Vertex ~(\alpha \pm a,\beta)=(-1 \pm 2,1)~ i.e. ~(1,1)~ and ~(-3,1).

(iii) Major axis is given by ~y=\beta ~~\text{or,}~~y=1 \Rightarrow y-1=0~ and minor axis is given by ~x=\alpha~~\text{or,}~~x=-1 \Rightarrow x+1=0.

(iv) Length of major axis =2a=2 \times 2=4~ unit and length of minor axis =2b=2\sqrt{3}~ unit.

(v) Eccentricity (e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 34}=\frac 12.

(vi) Length of latus rectum ~\left(\frac{2b^2}{a}\right)=\frac{2 \times 3}{2}=3~ unit.

(vii) The co-ordinates of foci are given by 

(\alpha \pm ae, \beta)=(-1 \pm 2 \times \frac 12, 1)=(-1 \pm 1,1)

i.e. ~(0,1)~ and ~(-2,1).

For Full Solution PDF of the Ellipse ( S N De-Chhaya Mathematics ), click here.

Solution (c).

We have the given equation of ellipse 

9x^2+5y^2-30y=0 \\ \text{or,}~~ 9x^2+5(y^2-6y+3^2)=45 \\ \text{or,}~~ \frac{x^2}{5}+\frac{(y-3)^2}{9}=1 \rightarrow(1)

Comparing ~(1)~ with the general equation of ellipse ~\frac{(x-\alpha)^2}{b^2}+\frac{(y-\beta)^2}{a^2}=1~ we get,

~a^2=9 \Rightarrow a =3,~~b^2=5 \Rightarrow b =\sqrt{5}, \alpha=0,~ \beta=3.

Clearly, the major axis of the ellipse is parallel to the ~y- axis and minor axis is parallel to ~x-axis.

(i) Centre ~(\alpha,\beta)=(0,3)~

(ii) Vertex ~(\alpha ,\beta \pm a)=(0, 3 \pm 3)~ i.e. ~(0,6)~ and ~(0,0).

(iii) Minor axis is given by ~y=\beta ~~\text{or,}~~y=3 \Rightarrow y-3=0~ and major axis is given by ~x=\alpha~~\text{or,}~~x=0 .

(iv) Length of major axis =2a=2 \times 3=6~ unit and length of minor axis =2b=2\sqrt{5}~ unit.

(v) Eccentricity (e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 59}=\frac 23.

(vi) Length of latus rectum ~\left(\frac{2b^2}{a}\right)=\frac{2 \times 5}{3}=\frac{10}{3}~ unit.

(vii)The co-ordinates of foci are given by 

(\alpha, \beta  \pm ae)=(0, 3 \pm 3 \times \frac 23)=(0, 3 \pm 2)

i.e. ~(0,5)~ and ~(0,1).

(viii) The equation of the directrix is 

y=\beta \pm \frac ae=3 \pm \frac{3}{2/3}=3 \pm \frac 92 \\ \text{or,}~~ 2y=6 \pm 9 \\ \text{or,}~~2y= 6+9,~~ 2y=6-9 \\ \text{or,}~~ 2y-15=0,~~ 2y+3=0. 

(viii) The equation of the directrix is 

x=\alpha \pm \frac ae=-1 \pm \frac{2}{1/2}=-1 \pm 4 \\ \text{or,}~~ x=-1+4=3,~~x=-1-4 \\ \text{or,}~~ x-3=0,~~ x+5=0. 

2(i)~ Find the eccentricity, the lengths of latus rectum and the centre of the ellipse ~9x^2+16y^2-54x+64y+1=0.

Solution.

We have the given equation of ellipse 

~9x^2+16y^2-54x+64y+1=0 \\ \text{or,}~~ 9(x^2-6x+9)+16(y^2+4y+4)=81+64-1 \\ \text{or,}~~ 9(x-3)^2+16(y+2)^2=144 \\ \text{or,}~~ \frac{(x-3)^2}{16}+\frac{(y+2)^2}{9}=1 \rightarrow(1)

From ~(1), we can say that the major axis of the given ellipse is parallel to ~x- axis and minor axis of the ellipse is parallel to ~y- axis.

The eccentricity of the ellipse is

(e)=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{16-9}{16}}=\frac{\sqrt{7}}{4}.

The length of the latus rectum is

\frac{2b^2}{a}=2 \times \frac 94=\frac 92~~\text{unit.}

Finally, the centre of the ellipse is ~(3,-2).

(ii)~ Find the latus rectum, the eccentricity and the co-ordinates of the foci of the ellipse ~9x^2+5y^2+30y=0.

Solution.

The equation of the ellipse 

~9x^2+5y^2+30y=0 \\ \text{or,}~~ 9x^2+5(y^2+6y+9)=45 \\ \text{or,}~~9x^2+5(y+3)^2=45 \\ \text{or,}~~ \frac{x^2}{5}+\frac{(y+3)^2}{9}=1 \rightarrow(1)

Comparing ~(1)~ with the general equation of ellipse ~\frac{(x-\alpha)^2}{b^2}+\frac{(y-\beta)^2}{a^2}=1~ we get,

~a^2=9 \Rightarrow a=3, b^2=5,~\alpha=0,~\beta=-3.

The length of the latus rectum 

=\frac{2b^2}{a}=2 \times \frac 53=\frac{10}{3}~\text{unit}.

The eccentricity of the ellipse is

(e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 59}=\sqrt{\frac{9-5}{9}}=\frac 23. 

The co-ordinates of foci are

(\alpha, \beta \pm ae)=(0,-3 \pm 3 \times \frac 23) 

i.e., ~(0,-3+2)~ and ~(0,-3-2)

i.e., ~(0,-1)~ and ~(0,-5).

3.~ Examine, with reasons, the validity of the following statement :

x^2+4y^2+2x-24y+33=0~ represents the equation of an ellipse whose eccentricity is ~\frac{\sqrt{3}}{2}.

Solution.

x^2+4y^2+2x-24y+33=0 \\ \text{or,}~~ (x^2+2x+1)+4(y^2-6y+8)=0\\ \text{or,}~~ (x^2+2x+1)+4(y^2-6y+9-1)=0  \\ \text{or,}~~ (x+1)^2+4(y-3)^2=4 \\ \text{or,}~~ \frac{(x+1)^2}{4}+\frac{(y-3)^2}{1}=1 \rightarrow(1)

Comparing ~(1)~ with the general equation of ellipse ~\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1~ we get, ~a^2=4, b^2=1.

The eccentricity of ~(1)~ is

(e)=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac 14}=\sqrt{\frac{4-1}{4}}=\frac{\sqrt{3}}{2}

So, the given equation represents the equation of the ellipse with eccentricity ~(e)=\frac{\sqrt{3}}{2}.

Hence, the aforesaid statement is valid.

Leave a Comment